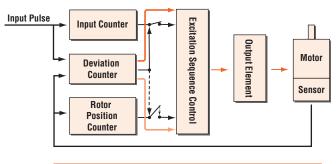


Additional Information

Technical ReferenceF-1	
General Information ······G-1	

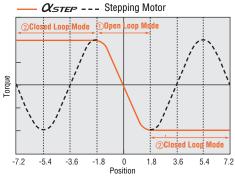
Closed Loop Stepping Motor and Driver Package

The \mathcal{A}_{STEP} is a revolutionary hybrid stepping motor and driver package which eliminates missed steps; a common problem with stepping motors. The \mathcal{A}_{STEP} uses a built-in feedback device that constantly monitors the motor shaft position to detect and correct for loss of synchronism. Geared models are also available.

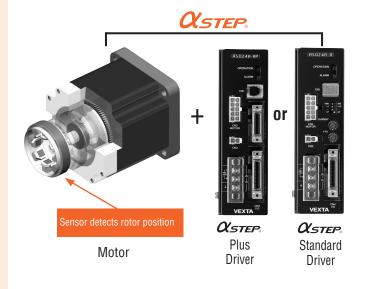

Features

Thanks to closed loop control, there is no loss of synchronism.

 α_{STEP} does not lose synchronism even when subjected to abrupt load fluctuation or acceleration. A newly developed rotor position detection sensor constantly monitors the motor movement. If synchronism is about to be lost, closed loop control is used, so there is no need to worry about loss of steps.


♦ 𝒴与𝒴𝑘 𝔅 ♦ 𝔅𝑘𝑘 𝑘𝑘 <p

Normal (Positioning Deviation is less than ±1.8°) Mortor runs in open loop mode like a stepping motor.


If Motor Missteps (Positioning Deviation is greater than $\pm 1.8^{\circ}$) Control switches to closed loop mode to prevent loss of synchronism.

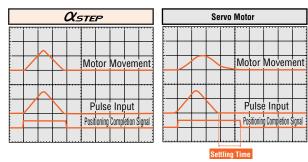
♦ αstep Angle-Torque Characteristics

(1) If the positioning deviation is $\pm 1.8^{\circ}$ or smaller, the motor runs in open loop mode like a stepping motor.

(2) If the positioning deviation is $\pm 1.8^{\circ}$ or greater, the motor runs in closed loop mode and the position is corrected by exciting the motor windings to generate maximum torque based on the rotor position.

Introduction

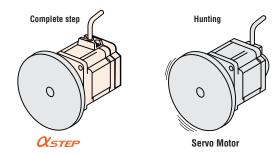
DC Input ASC


A

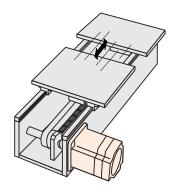
RR

High Response

Like conventional stepping motors, *Aster* operates in synchronism with command pulses. This makes possible short stroke positioning in a short time.

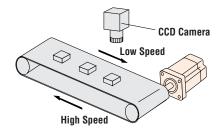

Measurement condition : Feed 1/5 rotation Load inertia 1.365 oz-in² (250×10⁻⁷ kg·m²)

 In traditional servo motors, there is a delay between the input pulse signals and the motor movement due to the way positioning is continuously monitored. Therefore, a servo motor needs time to settle to a stop after input signals stop. This is called settling time.


No Hunting

Since α_{STEP} is a stepping motor, it has no hunting problem such as might be found in a traditional servo motor. Therefore, when it stops, its position is completely stable and does not fluctuate. α_{STEP} is ideal for applications in which vibration would be a problem.

No Gain Tuning


Gain tuning for a servo motor is critical, troublesome and time-consuming. Since the *Aster* operates like a stepping motor, there are no gain tuning requirements. Low rigidity applications, such as a belt and pulley system, are ideal for **ASTEP**.

Low Vibration at Low Speed

The driver employs advanced technology that produces smoothness comparable to a microstepping driver. Its vibration level is incredibly low, even when operating in the low speed range. When frequent changes from low (high) to high (low) speed operation are required, the use of the Resolution Select Function solves the problem.

Xstep provides resolution as low as 0.036° per step without any damping mechanism or other mechanical device. Even smoother operation is possible with geared models.

Astep is well suited to applications where smooth movement or stability is required, such as where a camera is used to monitor the quality of a product.

AS Series Line-Up

ASTEP

AS Series (AC Power Input)

QsterPLUS Plus Integrated Controller and Driver

No separate pulse generator required

ASC Series →See Page C-55 (DC Power Input)

• Basic Model of *Xstep* Motor and Driver System

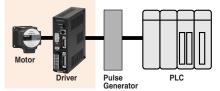
Tapered Hob (TH) Geared • A wide variety of low gear ratios for high-speed operation Gear Ratios 3.6:1, 7.2:1, 10:1, 20:1, 30:1

or

Planetary (PN) Geared

High speed (low gear ratios), High positioning precision
High permissible torque

High permissible torque
 Centered output shaft
 Gear Ratios 5:1, 7.2:1, 10:1,
 25:1, 36:1, 50:1


Harmonic (HG) Geared

High positioning precisionHigh permissible/maximum

torque

- Zero backlash
- High gear ratio, High resolutionCentered output shaft
- Gear Ratios 50:1, 100:1

Step & Direction Input Type

Motor and driver are controlled with an external pulse generator.

Integrated Controller & Driver

No external pulse generator required.

Product Line

			Maximum Holding Torque	
Туре	Power Supply Voltage	□1.65 in. (□42 mm)	□2.36 in. (□60 mm)	□3.35 in. (□85 mm) [Geared: □3.54 in. (□90 mm)]
	Single-Phase 100-115 VAC	•	•	•
	Single-Phase 200-230 VAC	—		•
Standard Type	Three-Phase 200-230 VAC	_	•	•
		42 oz-in	170~280 oz-in	280~560 oz-in
		(0.3 N·m)	(1.2~2.0 N⋅m)	(2.0∼4.0 N·m)
	Single-Phase 100-115 VAC	•	•	•
	Single-Phase 200-230 VAC	—	•	•
TH Geared Type	Three-Phase 200-230 VAC	—	•	•
		3.0~13.2 lb-in	11.0~35 lb-in	39~106 lb-in
		(0.35∼1.5 N·m)	(1.25∼4 N⋅m)	(4.5∼12 N·m)
	Single-Phase 100-115 VAC	•	•	•
	Single-Phase 200-230 VAC	—	•	•
PN Geared Type	Three-Phase 200-230 VAC	—	•	•
		13.2 lb-in	30~70 lb-in	88~320 lb-in
		(1.5 N⋅m)	(3.5∼8 N⋅m)	(10~37 N⋅m)
	Single-Phase 100-115 VAC	•	•	•
	Single-Phase 200-230 VAC	—	•	
HG Geared Type	Three-Phase 200-230 VAC	—	•	
		30~44 lb-in	48~70 lb-in	220~320 lb-in
		(3.5∼5.0 N·m)	(5.5~8.0 N⋅m)	(25~37 N⋅m)

• Electromagnetic brake models are also available.

Position Control

- Incremental mode (relative distance specification)/Absolute mode (absolute position specification)
- Linked operation (a maximum of four motion profiles may be linked)
- Data range (in pulses): -8,388,608 to +8,388,607
- Operating speed: 10 Hz to 500 kHz (set in 1Hz increments)

Four Operation Modes

- 1. Positioning
- 2. Mechanical home seeking (+LS, -LS, HOMELS)
- 3. Continuous
- 4. Electrical home seeking

General Inputs/Outputs

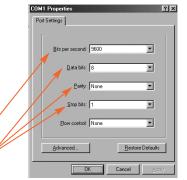
- 8 Programmable Inputs
- 8 Programmable Outputs

Daisy Chain Capability

• Up to 36 units can be daisy chained with unique device ID's

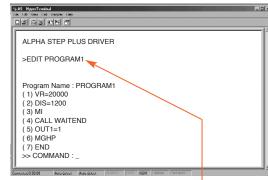
Communication

- ASCII based commands
- Conforms to RS-232C communication specifications
- Start-stop asynchronous transmission method
- Transmission speed: 9,600 bps
- Data length: 8 bits, 1 stop bit, no parity Protocol: TTY (CR+LF)
- Modular 4-pin connector


Program Memory

- Maximum number of programs: 14 (including STARTUP)
- Maximum lines per program: 64
- Commands per line: 1
- Program variables: 26 (A to Z)

Built-in Functions

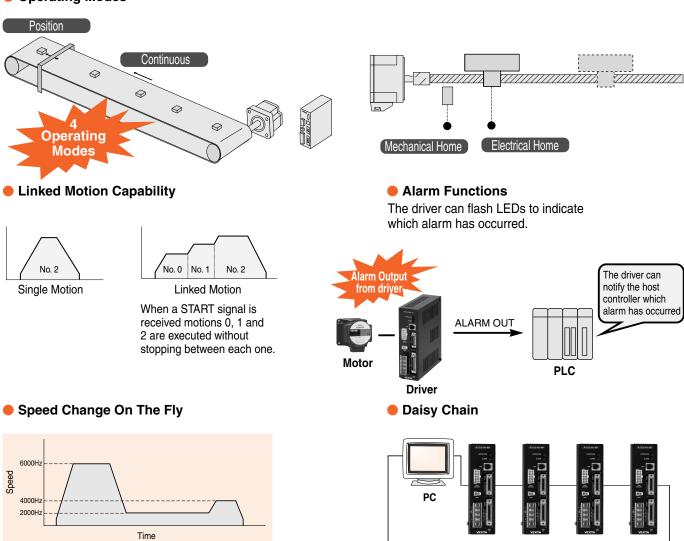

- Selectable motor-resolution
- Run and stop current values
- Speed-filter set value
- Motor rotation direction
- Emergency stop
- Sensor logic

- Over-travel limits
- · Software over-travel
- · Alarm history
- Syntax checking
- Display values
- Incremental moves
- I/O status

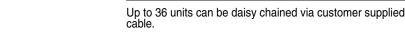
Using Windows HyperTerminal®, programming the *Xstep* **Plus** driver is a simple task.

Example: "PROGRAM1"

PROGRAM1 Definition


- Operating Speed: 20,000 Hz
- Move Distance: 1,200 pulses
- Call a subroutine that waits for the motor to stop before moving on to the next command
- Turn On Output #1
- Seek the Mechanical Home Position in the Positive Direction
- End of Program

Stepping Motors


Introduction

QSTEP Plus Features

Operating Modes

The running speed of the motor can be changed while the motor is in motion.

Safety Standards and CE Marking (Except for AS46 type)

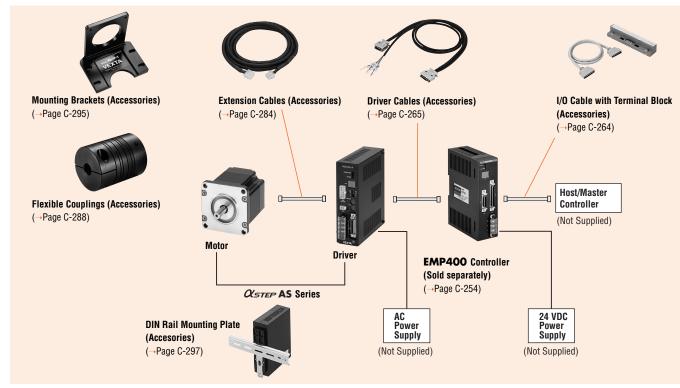
Model	Standards	Certification Body	File No.	CE Marking
	UL1004			
	UL2111	UL	E64199	
	CSA C22.2 No.100	UL	L04155	
Motor	CSA C22.2 No.77			Low
	EN60950		Voltage Directives	
	EN60034-1	Confo		
	EN60034-5			
	UL508C *1	111	E171462	EMC Directives
Driver	CSA C22.2 No.14	UL	E1/1402	
Driver	EN60950 *2	Confo	1	
	EN50178	Cont		

• When the system is approved under various safety standards, the model names in the motor and driver nameplates are the approved model names.

List of Motor and Driver Combinations → Page C-53

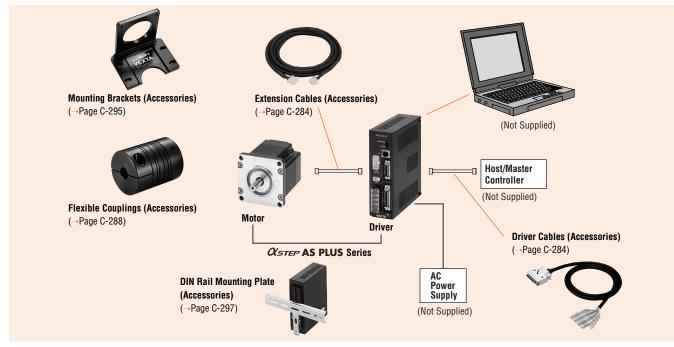
- Details of Safety Standards \rightarrow Page G-2

• The EMC value changes according to the wiring and layout. Therefore, the final EMC level must be checked with the motor/driver incorporated in the user's equipment.


*1 Maximum Ambient Temperature for UL

AS: 122°F (+50°C), **AS PLUS**: 104°F (+40°C)

*2 EN60950 (Certified AS only)


System Configuration

AS Series

An example of a single-axis system configuration with the **EMP400** Series controller.

AS PLUS

The system configuration shown is an example. Other combinations are available.

Extension Cables (For AS Series and AS PLUS Series)

Extension cables are not included with α_{STEP} products. When using the α_{STEP} stepping motor and driver more than 1.31 feet (0.4 m) apart from each other, use an optional extension cable (sold separately).

Note:

• Electromagnetic brake motor models [except motor frame size 1.65 in. (42 mm)] must use an optional electromagnetic brake extension cable. The frame size 1.65 in. (242 mm) models can use a standard extension cable even for electromagnetic brake motor models.

Introduction

AS PLUS

ASC

RR

CSK DC Input

PMC

UMK

CSK

PK/PV

Ŗ with

UI2120G

DC Input

AC Input

DC Input CFKI

5-Phase Full/Half

2-Phase Full/Half AC Input DC Input

without Encoder

Encode

2-Phase Stepping Motors

Driver with Indexer

Product Number Code

<u>AS 6 6 A A P-T 3.6</u> Gear Ratio Blank: Standard Type T: **TH** Geared Type N: PN Geared Type H: HG Geared Type P: AlphaStep Plus Blank: AlphaStep Standard Power Input A: Single-Phase 100-115 VAC C: Single-Phase 200-230 VAC S: Three-Phase 200-230 VAC A: Without Electromagnetic Brake (Single Shaft) M: Electromagnetic Brake Motor Case Length Motor Frame Size 4: 1.65 in. sq. (42 mm sq.) 6: 2.36 in. sq. (60 mm sq.) 9: 3.35 in. sq. (85 mm sq.) [3.54 in. sq. (90 mm sq.) for geared type] AS: AS series

AS Product Lines

AS Series

Standard Type

	Wi	Without Electromagnetic Brake			Electromagnetic Brake		
Power Source	Motor Frame Size: □1.65 in. (□42 mm) Model	Motor Frame Size: □2.36 in. (□60 mm) Model	Motor Frame Size: □3.35 in. (□85 mm) Model	Motor Frame Size: □1.65 in. (□42 mm) Model	Motor Frame Size: □2.36 in. (□60 mm) Model	Motor Frame Size: □3.35 in. (□85 mm) Model	
Single-Phase	AS46AA	AS66AA	AS98AA	AS46MA	AS66MA	AS98MA	
100-115 VAC		AS69AA	AS911AA	—	AS69MA	—	
Single-Phase		AS66AC	AS98AC		AS66MC	AS98MC	
200-230 VAC		AS69AC	AS911AC		AS69MC	—	
Three-Phase 200-230 VAC	_	AS66AS	AS98AS		AS66MS	AS98MS	
		AS69AS	AS911AS		AS69MS	—	

TH Geared Type

	Wi	Without Electromagnetic Brake			Electromagnetic Brake		
Power Source	Motor Frame Size: 1.65 in. (□42 mm) Model	Motor Frame Size: □2.36 in. (□60 mm) Model	Motor Frame Size: □3.54 in. (□90 mm) Model	Motor Frame Size: □1.65 in. (□42 mm) Model	Motor Frame Size: □2.36 in. (□60 mm) Model	Motor Frame Size: □3.54 in. (□90 mm) Model	
	AS46AA-T3.6	AS66AA-T3.6	AS98AA-T3.6	AS46MA-T3.6	AS66MA-T3.6	AS98MA-T3.6	
0. 1 51	AS46AA-T7.2	AS66AA-T7.2	AS98AA-T7.2	AS46MA-T7.2	AS66MA-T7.2	AS98MA-T7.2	
Single-Phase 100-115 VAC	AS46AA-T10	AS66AA-T10	AS98AA-T10	AS46MA-T10	AS66MA-T10	AS98MA-T10	
100-113 VA0	AS46AA-T20	AS66AA-T20	AS98AA-T20	AS46MA-T20	AS66MA-T20	AS98MA-T20	
	AS46AA-T30	AS66AA-T30	AS98AA-T30	AS46MA-T30	AS66MA-T30	AS98MA-T30	
	_	AS66AC-T3.6	AS98AC-T3.6	_	AS66MC-T3.6	AS98MC-T3.6	
0. 1 51		AS66AC-T7.2	AS98AC-T7.2	_	AS66MC-T7.2	AS98MC-T7.2	
Single-Phase 200-230 VAC		AS66AC-T10	AS98AC-T10	_	AS66MC-T10	AS98MC-T10	
200-230 VA0		AS66AC-T20	AS98AC-T20	—	AS66MC-T20	AS98MC-T20	
		AS66AC-T30	AS98AC-T30	_	AS66MC-T30	AS98MC-T30	
	_	AS66AS-T3.6	AS98AS-T3.6	_	AS66MS-T3.6	AS98MS-T3.6	
		AS66AS-T7.2	AS98AS-T7.2	_	AS66MS-T7.2	AS98MS-T7.2	
Three-Phase 200-230 VAC		AS66AS-T10	AS98AS-T10	_	AS66MS-T10	AS98MS-T10	
200-200 VAU		AS66AS-T20	AS98AS-T20	_	AS66MS-T20	AS98MS-T20	
		AS66AS-T30	AS98AS-T30	_	AS66MS-T30	AS98MS-T30	

PN Geared Type

	Wi	Without Electromagnetic Brake			Electromagnetic Brake		
Power Source	Motor Frame Size: □1.65 in. (□42 mm) Model	Motor Frame Size: □2.36 in. (□60 mm) Model	Motor Frame Size: □3.54 in. (□90 mm) Model	Motor Frame Size: □1.65 in. (□42 mm) Model	Motor Frame Size: □2.36 in. (□60 mm) Model	Motor Frame Size: □3.54 in. (□90 mm) Model	
	_	AS66AA-N5	AS98AA-N5		AS66MA-N5	AS98MA-N5	
	AS46AA-N7.2	AS66AA-N7.2	AS98AA-N7.2	AS46MA-N7.2	AS66MA-N7.2	AS98MA-N7.2	
Single-Phase	AS46AA-N10	AS66AA-N10	AS98AA-N10	AS46MA-N10	AS66MA-N10	AS98MA-N10	
100-115 VAC	—	AS66AA-N25	AS98AA-N25		AS66MA-N25	AS98MA-N25	
	_	AS66AA-N36	AS98AA-N36		AS66MA-N36	AS98MA-N36	
	_	AS66AA-N50	AS98AA-N50		AS66MA-N50	AS98MA-N50	
	_	AS66AC-N5	AS98AC-N5		AS66MC-N5	AS98MC-N5	
	_	AS66AC-N7.2	AS98AC-N7.2		AS66MC-N7.2	AS98MC-N7.2	
Single-Phase	—	AS66AC-N10	AS98AC-N10	_	AS66MC-N10	AS98MC-N10	
200-230 VAC	—	AS66AC-N25	AS98AC-N25		AS66MC-N25	AS98MC-N25	
	—	AS66AC-N36	AS98AC-N36		AS66MC-N36	AS98MC-N36	
	—	AS66AC-N50	AS98AC-N50		AS66MC-N50	AS98MC-N50	
	_	AS66AS-N5	AS98AS-N5		AS66MS-N5	AS98MS-N5	
	_	AS66AS-N7.2	AS98AS-N7.2		AS66MS-N7.2	AS98MS-N7.2	
Three-Phase	_	AS66AS-N10	AS98AS-N10		AS66MS-N10	AS98MS-N10	
200-230 VAC	_	AS66AS-N25	AS98AS-N25		AS66MS-N25	AS98MS-N25	
	_	AS66AS-N36	AS98AS-N36		AS66MS-N36	AS98MS-N36	
		AS66AS-N50	AS98AS-N50		AS66MS-N50	AS98MS-N50	

♦ HG Geared Type

	Without Electromagnetic Brake		ake	Electromagnetic Brake		
Power Source	Motor Frame Size: □1.65 in. (□42 mm) Model	Motor Frame Size: □2.36 in. (□60 mm) Model	Motor Frame Size: □3.54 in. (□90 mm) Model	Motor Frame Size: 1.65 in. (42 mm) Model	Motor Frame Size: □2.36 in. (□60 mm) Model	Motor Frame Size: □3.54 in. (□90 mm) Model
Single-Phase	AS46AA2-H50	AS66AA2-H50	AS98AA-H50	AS46MA2-H50	AS66MA2-H50	AS98MA-H50
100-115 VAC	AS46AA2-H100	AS66AA2-H100	AS98AA-H100	AS46MA2-H100	AS66MA2-H100	AS98MA-H100
Single-Phase	_	AS66AC2-H50	AS98AC-H50		AS66MC2-H50	AS98MC-H50
200-230 VAC		AS66AC2-H100	AS98AC-H100	_	AS66MC2-H100	AS98MC-H100
Three-Phase 200-230 VAC	_	AS66AS2-H50	AS98AS-H50	_	AS66MS2-H50	AS98MS-H50
	_	AS66AS2-H100	AS98AS-H100	—	AS66MS2-H100	AS98MS-H100

● AS Series 𝒜 STEP PLUS ◆ Standard Type

	Without Electromagnetic Brake			Electromagnetic Brake		
Power Source	Motor Frame Size: 1.65 in. (42 mm) Model	Motor Frame Size: □2.36 in. (□60 mm) Model	Motor Frame Size: □3.35 in. (□85 mm) Model	Motor Frame Size: □1.65 in. (□42 mm) Model	Motor Frame Size: □2.36 in. (□60 mm) Model	Motor Frame Size: □3.35 in. (□85 mm) Model
Single-Phase	AS46AAP	AS66AAP	AS98AAP	AS46MAP	AS66MAP	AS98MAP
100-115 VAC	—	AS69AAP	AS911AAP		AS69MAP	
Single-Phase	—	AS66ACP	AS98ACP	—	AS66MCP	AS98MCP
200-230 VAC	—	AS69ACP	AS911ACP	—	AS69MCP	_
Three-Phase 200-230 VAC	_	AS66ASP	AS98ASP	_	AS66MSP	AS98MSP
	—	AS69ASP	AS911ASP	—	AS69MSP	—

Introduction

AS

AS PLUS

ASC

RR

СГКП

CSK

PMC

UMK

CSK

Motor & Driver Packages XSTEP 5-Phase Microstep 5-Phase Full/Half DC Input AC Input DC Input DC Input

2-Phase Stepping Motors 2-Phase Full/Half without with AC Input DC Input Encoder Encoder

• TH Geared Type

	Wi	Without Electromagnetic Brake			Electromagnetic Brake		
Power Source	Motor Frame Size: □1.65 in. (□42 mm) Model	Motor Frame Size: □2.36 in. (□60 mm) Model	Motor Frame Size: □3.54 in. (□90 mm) Model	Motor Frame Size: □1.65 in. (□42 mm) Model	Motor Frame Size: □2.36 in. (□60 mm) Model	Motor Frame Size: □3.54 in. (□90 mm) Model	
	AS46AAP-T3.6	AS66AAP-T3.6	AS98AAP-T3.6	AS46MAP-T3.6	AS66MAP-T3.6	AS98MAP-T3.6	
0. 1 51	AS46AAP-T7.2	AS66AAP-T7.2	AS98AAP-T7.2	AS46MAP-T7.2	AS66MAP-T7.2	AS98MAP-T7.2	
Single-Phase 100-115 VAC	AS46AAP-T10	AS66AAP-T10	AS98AAP-T10	AS46MAP-T10	AS66MAP-T10	AS98MAP-T10	
100-115 VA0	AS46AAP-T20	AS66AAP-T20	AS98AAP-T20	AS46MAP-T20	AS66MAP-T20	AS98MAP-T20	
	AS46AAP-T30	AS66AAP-T30	AS98AAP-T30	AS46MAP-T30	AS66MAP-T30	AS98MAP-T30	
	—	AS66ACP-T3.6	AS98ACP-T3.6	_	AS66MCP-T3.6	AS98MCP-T3.6	
		AS66ACP-T7.2	AS98ACP-T7.2	_	AS66MCP-T7.2	AS98MCP-T7.2	
Single-Phase 200-230 VAC	_	AS66ACP-T10	AS98ACP-T10	—	AS66MCP-T10	AS98MCP-T10	
200-230 VA0	—	AS66ACP-T20	AS98ACP-T20	_	AS66MCP-T20	AS98MCP-T20	
	—	AS66ACP-T30	AS98ACP-T30	_	AS66MCP-T30	AS98MCP-T30	
	_	AS66ASP-T3.6	AS98ASP-T3.6	_	AS66MSP-T3.6	AS98MSP-T3.6	
T I DI	_	AS66ASP-T7.2	AS98ASP-T7.2	_	AS66MSP-T7.2	AS98MSP-T7.2	
Three-Phase 200-230 VAC	—	AS66ASP-T10	AS98ASP-T10	—	AS66MSP-T10	AS98MSP-T10	
200-230 VAG	—	AS66ASP-T20	AS98ASP-T20	_	AS66MSP-T20	AS98MSP-T20	
	—	AS66ASP-T30	AS98ASP-T30	_	AS66MSP-T30	AS98MSP-T30	

PN Geared Type

	Wi	Without Electromagnetic Brake			Electromagnetic Brake		
Power Source	Motor Frame Size: 1.65 in. (42 mm) Model	Motor Frame Size: □2.36 in. (□60 mm) Model	Motor Frame Size: □3.54 in. (□90 mm) Model	Motor Frame Size: □1.65 in. (□42 mm) Model	Motor Frame Size: □2.36 in. (□60 mm) Model	Motor Frame Size: □3.54 in. (□90 mm) Model	
	_	AS66AAP-N5	AS98AAP-N5	_	AS66MAP-N5	AS98MAP-N5	
	AS46AAP-N7.2	AS66AAP-N7.2	AS98AAP-N7.2	AS46MAP-N7.2	AS66MAP-N7.2	AS98MAP-N7.2	
Single-Phase	AS46AAP-N10	AS66AAP-N10	AS98AAP-N10	AS46MAP-N10	AS66MAP-N10	AS98MAP-N10	
100-115 VAC	_	AS66AAP-N25	AS98AAP-N25	—	AS66MAP-N25	AS98MAP-N25	
	_	AS66AAP-N36	AS98AAP-N36	_	AS66MAP-N36	AS98MAP-N36	
		AS66AAP-N50	AS98AAP-N50	_	AS66MAP-N50	AS98MAP-N50	
	_	AS66ACP-N5	AS98ACP-N5	—	AS66MCP-N5	AS98MCP-N5	
	_	AS66ACP-N7.2	AS98ACP-N7.2	_	AS66MCP-N7.2	AS98MCP-N7.2	
Single-Phase	_	AS66ACP-N10	AS98ACP-N10	_	AS66MCP-N10	AS98MCP-N10	
200-230 VAC		AS66ACP-N25	AS98ACP-N25	_	AS66MCP-N25	AS98MCP-N25	
	_	AS66ACP-N36	AS98ACP-N36	_	AS66MCP-N36	AS98MCP-N36	
		AS66ACP-N50	AS98ACP-N50		AS66MCP-N50	AS98MCP-N50	
	_	AS66ASP-N5	AS98ASP-N5		AS66MSP-N5	AS98MSP-N5	
		AS66ASP-N7.2	AS98ASP-N7.2	_	AS66MSP-N7.2	AS98MSP-N7.2	
Three-Phase	_	AS66ASP-N10	AS98ASP-N10		AS66MSP-N10	AS98MSP-N10	
200-230 VAC	_	AS66ASP-N25	AS98ASP-N25	—	AS66MSP-N25	AS98MSP-N25	
		AS66ASP-N36	AS98ASP-N36	—	AS66MSP-N36	AS98MSP-N36	
	_	AS66ASP-N50	AS98ASP-N50	_	AS66MSP-N50	AS98MSP-N50	

♦ HG Geared Type

	Wit	Without Electromagnetic Brake			Electromagnetic Brake		
Power Source	Motor Frame Size: □1.65 in. (□42 mm) Model	Motor Frame Size: □2.36 in. (□60 mm) Model	Motor Frame Size: □3.54 in. (□90 mm) Model	Motor Frame Size: □1.65 in. (□42 mm) Model	Motor Frame Size: □2.36 in. (□60 mm) Model	Motor Frame Size: □3.54 in. (□90 mm) Model	
Single-Phase	AS46AAP2-H50	AS66AAP2-H50	AS98AAP-H50	AS46MAP2-H50	AS66MAP2-H50	AS98MAP-H50	
100-115 VAC	AS46AAP2-H100	AS66AAP2-H100	AS98AAP-H100	AS46MAP2-H100	AS66MAP2-H100	AS98MAP-H100	
Single-Phase	_	AS66ACP2-H50	AS98ACP-H50	_	AS66MCP2-H50	AS98MCP-H50	
200-230 VAC		AS66ACP2-H100	AS98ACP-H100	_	AS66MCP2-H100	AS98MCP-H100	
Three-Phase	—	AS66ASP2-H50	AS98ASP-H50	—	AS66MSP2-H50	AS98MSP-H50	
200-230 VAC	—	AS66ASP2-H100	AS98ASP-H100	—	AS66MSP2-H100	AS98MSP-H100	

SIS

PMC

UMK

CSK

PK/PV

PR

4000

60

2-Phase Full/Half AC Input DC Input

without with Encoder Encoder 2-Phase Stepping Motors

Specifications

		-				· •				
	AS	W/O Electromagnetic Bral	e AS46AA	AS66A	AS69A	AS98A	AS911A			
Model ^{*1}	AS	Electromagnetic Brak	AS46MA	AS66M	AS69M	AS98M	_			
NIOUEI	AS PLUS	W/O Electromagnetic Bral	e AS46AAP	AS66A_P	AS69A_P	AS98A_P	AS911ADP			
	AS PLUS	Electromagnetic Brak	AS46MAP	AS66M_P AS69M_P		AS98M_P	_			
Maximum Holdir	ng Torque	oz-in (N∙m) 42 (0.3)	170 (1.2)	280 (2.0)	280 (2.0)	560 (4.0)			
Rotor Inertia*2 J			0.37 (68×10 ⁻⁷)	2.2 (405×10 ⁻⁷)	4.4 (802×10 ⁻⁷)	7.7 (1400×10 ⁻⁷)	14.0 (0710) (10-7)			
Rotor mertia ¹² J		oz-in² (kg⋅m²) [0.45 (83×10 ⁻⁷)]	[3.1 (564×10 ⁻⁷)]	[5.3 (961×10 ⁻⁷)]	[8.5 (1560×10 ⁻⁷)]	14.8 (2710×10 ⁻⁷)			
Resolution*4				0.36°/Pul	se (Resolution Setting: 1	000 P/R)				
				$\square = \mathbf{A}$ for Single-Pt	nase 100-115 VAC -15%	%∼+10% · 50/60 Hz				
Power Source		Voltage-Frequenc	y	$\square = \mathbf{C}$ for Single-Phase 200-230 VAC $-15\% \sim +10\% \cdot 50/60$ Hz						
				\square = S for Three-Phase 200-230 VAC -15% \sim $+10\%$ \cdot 50/60 Hz						
Marrison	Single	-Phase 100-115 VA	C 3.3 A	5.0 A	6.4 A	6.0 A	6.5 A			
Maximum	Single	-Phase 200-230 VA	C —	3.0 A	3.9 A	3.5 A	4.5 A			
Input Current	Three	-Phase 200-230 VA	C —	1.5 A	2.2 A	1.9 A	2.4 A			
	T	уре		Active when power is off						
Electromagnetic	Р	ower Supply Input		24 VDC±5%						
Brake*3	Р	ower Consumption	2 W		6 W		_			
DIAKE	E	xcitation Current	0.08 A		0.25 A		_			
S	tatic Friction	Torque oz-in (N·m) 21 (0.15)	85 (0.6)	142 (1.0)	142 (1.0)	_			
Weight*2	N	lotor Ib. (kg) 1.1 (0.5) [1.3 (0.6)]	1.9 (0.85) [2.4 (1.1)]	3.1 (1.4) [3.6 (1.65)]	4.0 (1.8) [4.8 (2.2)]	6.6 (3.0)			
weight	D	river Ib. (kg)	· · · · · · · · · · · · · · · · · · ·	1.8 (0.8)	· · · · · · · · · · · · · · · · · · ·	<u> </u>			
Dimension No.	N	lotor	1		2	3				
Dimension No.	D	river		AS=13 AS PLUS=14						

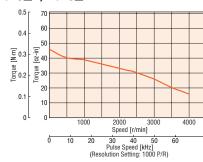
*1 The square box in the model number will contain one of the following letters to indicate the power supply

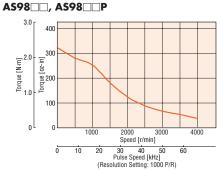
voltage: A (Single-Phase 100-115 VAC), C (Single-Phase 200-230 VAC) or S (Three-Phase 200-230 VAC).

*2 The values inside the brackets [] represents the specification for electromagnetic brake type.

*3 The electromagnetic brakes are for holding the position when the power is off. They can not be used for complicated braking.

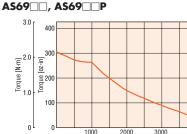
Also, a separate 24 VDC ±5%, 0.3 A min. power supply is required for the electromagnetic brake, along with the accessory electromagnetic brake type extension cable. *4 AS series: The resolution can be set to any one of 500 P/R, 1000 P/R, 5000 P/R, 10000 P/R with the resolution select


switch or resolution select switching signals. See page C-39 for details.


AS PLUS: The resolution can be set from 500 P/R to 10000 P/R by setting parameters.

How to Read Specifications Table→Page C-9

Speed — Torque Characteristics How to Read Speed-Torque Characteristics → Page C-10


AS46 A, AS46 AP

2.0 250 1.5 200 Torque [N·m] <u>8</u>150 Torque 100 0.5 50 0 1000 4000 2000 3000 Speed [r/min] ŏ 30 40 5 Pulse Speed [kHz] 10 20 50 60 (Resolution Se 1000 P/R AS911A, AS911AP 600 AS911AA AS911AC AS911AS

드 성 400 Torque [N·m] Torque 200 0 4000 1000 2000 3 Speed [r/min] 3000 հ 10 20 20 30 40 50 Pulse Speed [kHz] (Resolution Setting: 1000 P/R) 60

ŏ 10 20 Speed [r/min]

20 30 40 50 Pulse Speed [kHz] (Resolution Setting: 1000 P/R)

Notes:

• Pay attention to heat dissipation from motor and driver. In particular, remember that the motor will produce a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 212°F (100°C). [Under 176°F (75°C) is required to comply with UL or CSA standards.]

Specifications

	AS	W/O Electromagnetic Brake	AS46AA-T3.6	AS46AA-T7.2	AS46AA-T10	AS46AA-T20	AS46AA-T30	
Madal	AS	Electromagnetic Brake	AS46MA-T3.6	AS46MA-T7.2	A\$46MA-T10	AS46MA-T20	AS46MA-T30	
lodel		W/O Electromagnetic Brake	AS46AAP-T3.6	AS46AAP-T3.6 AS46AAP-T7.2 A		AS46AAP-T20	AS46AAP-T30	
	AS PLUS	Electromagnetic Brake	AS46MAP-T3.6	AS46MAP-T7.2	AS46MAP-T10	AS46MAP-T20	AS46MAP-T30	
Maximum Holdir	ng Torque	lb-in (N⋅m)	3 (0.35)	6.1 (0.7)	8.8 (1)	13.2 (1.5)	13.2 (1.5)	
Rotor Inertia ^{*2} J		oz-in² (kg·m²)		0.37	(68×10 ⁻⁷) [0.45 (83×1	0-7)]		
Backlash		arc min (degrees)	45 (0.75°)	25 (0.417°)	25 (0.417°)	15 (0.25°)	15 (0.25°)	
Permissible Spe	ed Range	r/min	0~500	0~250	0~180	0~90	0~60	
Gear Ratio			3.6 : 1	7.2 : 1	10 : 1	20 : 1	30 : 1	
Resolution*4		1000 P/R	0.1°/pulse	0.05°/pulse	0.036°/pulse	0.018°/pulse	0.012°/pulse	
Permissible Toro	lue	lb-in (N⋅m)	3 (0.35)	6.1 (0.7)	8.8 (1)	13.2 (1.5)	13.2 (1.5)	
Power Source	/oltage.Frequen	cy·Maximum Input Current		Single-Phase 100	-115 VAC -15%~+10%	% · 50/60 Hz·3.3 A		
	T	уре	Active when power is off					
Electromagnetic	P	ower Supply Input			24 VDC±5%			
Brake ^{*3}	P	ower Consumption	2 W					
DIAKE	E	xcitation Current			0.08 A			
	Static Frictio	n Torque Ib-in (N·m)	1.5 (0.17)	3 (0.35)	4.4 (0.5)	6.6 (0.75)	6.6 (0.75)	
Weight*2	N	lotor Ib. (kg)	1.4 (0.65) [1.7 (0.75)]					
weight	D	river Ib. (kg)			1.8 (0.8)			
Dimension No.	N	lotor			4			
Dimension No.	D	river			AS=13 AS PLUS=14	4		

*2 The values inside the brackets [] represents the specification for electromagnetic brake type.

*3 The electromagnetic brakes are for holding the position when the power is off. They can not be used for complicated braking.

Also, a separate 24 VDC ±5%, 0.3 A min. power supply is required for the electromagnetic brake, along with the accessory electromagnetic brake type extension cable. *4 AS series: The resolution can be set to any one of 500 P/R, 1000 P/R, 5000 P/R, 10000 P/R with the resolution select

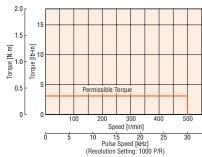
switch or resolution select switching signals. See page C-39 for details.

AS PLUS: The resolution can be set from 500 P/R to 10000 P/R by setting parameters.

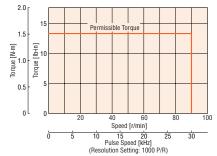
How to Read Specifications Table→Page C-9

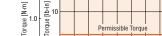
Note:

Direction of rotation of the motor and that of the gear output shaft are the same for unit type with reduction ratio 3.6:1, 7.2:1 and 10:1.
 It is opposite for 20:1 and 30:1 ratio type.

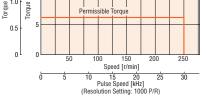

Speed — Torque Characteristics How to Read Speed-Torque Characteristics → Page C-10

2.0

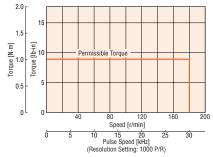

1.5

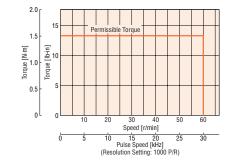

15

AS46 A-T3.6, AS46 AP-T3.6



AS46 A-T20, AS46 AP-T20




AS46 A-T7.2, AS46 AP-T7.2

AS46 A-T30, AS46 AP-T30

Pay attention to heat dissipation from motor and driver. In particular, remember that the motor will produce a considerable amount of heat under certain conditions. Be sure
to keep the temperature of the motor case under 212°F (100°C).

TH Geared Type

Motor Frame Size: \Box 2.36 in. (\Box 60 mm)

Specifications

		W/O Electromagnetic Brake	AS66AT3.6	AS66AT7.2	AS66A	AS66A	AS66A	
Madal%1	AS	Electromagnetic Brake	AS66MT3.6	AS66MT7.2	AS66MT10	AS66MT20	AS66MT30	
Vodel ^{*1}		W/O Electromagnetic Brake	AS66A P-T3.6	AS66A_P-T7.2	AS66A P-T10	AS66A P-T20	AS66A_P-T30	
	AS PLUS	Electromagnetic Brake	AS66M_P-T3.6	AS66M_P-T7.2	AS66M P-T10	AS66M_P-T20	AS66M P-T30	
Maximum Holdin	g Torque	lb-in (N⋅m)	11 (1.25)	22 (2.5)	26 (3)	30 (3.5)	35 (4)	
Rotor Inertia ^{*2} J		oz-in ² (kg·m ²)		2.2	405×10 ⁻⁷) [3.1 (564×1	0-7)]		
Backlash		arc min (degrees)	35 (0.584°)	15 (0.25°)	15 (0.25°)	10 (0.167°)	10 (0.167°)	
Permissible Spee	d Range	r/min	0~500	0~250	0~180	0~90	0~60	
Gear Ratio			3.6 : 1	7.2 : 1	10 : 1	20 : 1	30 : 1	
Resolution*4		1000 P/R	0.1°/pulse	0.05°/pulse	0.036°/pulse	0.018°/pulse	0.012°/pulse	
Permissible Torq	ue	lb-in (N⋅m)	11 (1.25)	22 (2.5)	26 (3)	30 (3.5)	35 (4)	
				= A For Single-Phase	100-115 VAC -15%~-	+10% · 50/60 Hz·5.0 A		
Power Source V	oltage:Frequenc	cy Maximum Input Current	$\square = \mathbf{C}$ For Single-Phase 200-230 VAC $-15\% \sim +10\% \cdot 50/60$ Hz·3.0 A					
				= S For Three-Phase	200-230 VAC $-15\%{\sim}$ -	+10% · 50/60 Hz·1.5 A		
	Ty	/pe	Active when power is off					
Electromagnetic	Ρ	ower Supply Input			24 VDC±5%			
Brake ^{*3}	Ρ	ower Consumption			6 W			
DIAKE	E	citation Current			0.25 A			
S	Static Friction	n Torque Ib-in (N·m)	5.4 (0.62)	11 (1.25)	13.2 (1.5)	15.4 (1.75)	17.7 (2.0)	
Weight*2	N	lotor lb. (kg)	2.8 (1.25) [3.3 (1.5)]					
weight	D	river Ib. (kg)						
Dimonoion No	N	lotor			5			
Dimension No.	D	river	AS=13 AS PLUS=14					

*1 The square box in the model number will contain one of the following letters to indicate the power supply

voltage: A (Single-Phase 100-115 VAC), C (Single-Phase 200-230 VAC) or S (Three-Phase 200-230 VAC).

*2 The values inside the brackets [] represents the specification for electromagnetic brake type.

*3 The electromagnetic brakes are for holding the position when the power is off. They can not be used for complicated braking.

Also, a separate 24 VDC ±5%, 0.3 A min. power supply is required for the electromagnetic brake, along with the accessory electromagnetic brake type extension cable. *4 AS series: The resolution can be set to any one of 500 P/R, 1000 P/R, 5000 P/R, 10000 P/R with the resolution select

switch or resolution select switching signals. See page C-39 for details.

AS PLUS: The resolution can be set from 500 P/R to 10000 P/R by setting parameters.

How to Read Specifications Table→Page C-9

Note:

 Direction of rotation of the motor and that of the gear output shaft are the same for unit type with reduction ratio 3.6:1, 7.2:1 and 10:1. It is opposite for 20:1 and 30:1 ratio type.

Speed — Torque Characteristics How to Read Speed-Torque Characteristics→Page C-10

5.0 5.0 10 40 4.0 4.0 4.0 [N-3.0 [N-10 2.0 h-in [ni-d] 훈 3.0 홈 [lb-in] Ē3.0] anb.og] anbio anbio 2.0 anbioj anb 20 1.0 1.0 ٥ 0 300 500 Speed [r/min] Speed [r/min] ŏ 10 15 20 25 Pulse Speed [kHz] (Resolution Setting: 1000 P/R) 30 30 5 25 ň 10 15 20 2 Pulse Speed [kHz] (Resolution Setting: 1000 P/R) 40 4.0 4.0 ciblo .30 30 Torque [N·m] 2.0 [lb-in] lni-dl 훈 3.0) anbio orque orque 1.0 1.0 ٥ 0 100 40 60 Speed [r/min] Speed [r/min] ň 30 30 10 15 20 2 Pulse Speed [kHz] (Resolution Setting: 1000 P/R) 10 15 20 2 Pulse Speed [kHz] (Resolution Setting: 1000 P/R)

Speed [r/min] 30 15 20 Pulse Speed [kHz] (Resolution Setting: 1000 P/R)

Notes:

• Pay attention to heat dissipation from motor and driver. In particular, remember that the motor will produce a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 212°F (100°C). [Under 176°F (75°C) is required to comply with UL or CSA standards.] • When using the motor with the dedicated driver, the driver's automatic current cutbuck at motor standstill function reduces maximum holding torque by approximately 50%.

AS PLUS

RR

CFKI

CSK

PMC

UMK

CSK

PK/PV

UI2120G EMP401

SC8800 SC8800E SG8030J

SMK

Accessorie

DC Input ASC

> AC Input DC Input 5-Phase Microstep

5-Phase Full/Half DC Input

2-Phase Full/Half AC Input DC Input

without Encoder

Encoder PR

with

Driver with Indexe

Controllers

2-Phase Stepping Motors

TH Geared Type

Specifications

	oution	0							
	AS	W/O Electromagnetic Brake	AS98AT3.6	AS98AT7.2	AS98AT10	AS98AT20	AS98AT30		
Model*1	AS	Electromagnetic Brake	AS98MT3.6	AS98MT7.2	AS98MT10	AS98MT20	AS98MT30		
WOUEI	AS PLUS	W/O Electromagnetic Brake	AS98A_P-T3.6	AS98A_P-T7.2	AS98A_P-T10	AS98A_P-T20	AS98A_P-T30		
	AJ PLUJ	Electromagnetic Brake	AS98M_P-T3.6	AS98M_P-T7.2	AS98M_P-T10	AS98M_P-T20	AS98M_P-T30		
Maximum Hold	ing Torque	lb-in (N⋅m)	39 (4.5)	79 (9)	79 (9)	106 (12)	106 (12)		
Rotor Inertia*2	J	oz-in² (kg·m²)		7.7 (1	400×10 ⁻⁷) [8.5 (1560×	10-7)]			
Backlash		arc min (degrees)	25 (0.417°)	15 (0.25°)	15 (0.25°)	10 (0.167°)	10 (0.167°)		
Permissible Sp	eed Range	r/min	0~500	0~250	0~180	0~90	0~60		
Gear Ratio			3.6 : 1	7.2 : 1	10:1	20 : 1	30 : 1		
Resolution*4		1000 P/R	0.1°/pulse	0.05°/pulse	0.036°/pulse	0.018°/pulse	0.012°/pulse		
Permissible Tor	que	lb-in (N⋅m)	39 (4.5)	79 (9)	79 (9)	106 (12)	106 (12)		
				□= A for Single-Phase	$2100-115$ VAC -15% \sim	+10% · 50/60 Hz·6.0 A			
Power Source	Voltage-Frequen	cy·Maximum Input Current		$\Box = \mathbf{C}$ for Single-Phase	200-230 VAC -15%~-	+10% · 50/60 Hz·3.5 A			
				□= S for Three-Phase	200-230 VAC $-15\%{\sim}$	+10% · 50/60 Hz·1.9 A			
	T	уре	Active when power is off						
Electromogneti	, P	ower Supply Input			24 VDC±5%				
Electromagneti Brake ^{*3}	, <u>P</u>	ower Consumption			6 W				
DIAKE	E	xcitation Current			0.25 A				
	Static Frictio	n Torque Ib-in (N∙m)	19.9 (2.25)	39 (4.5)	39 (4.5)	53 (6)	53 (6)		
Weight*2	N	lotor Ib. (kg)	6.6 (3.0) [7.5 (3.4)]						
weight	D	river lb. (kg)	1.8 (0.8)						
Dimension No.	Ν	lotor			6				
Dimension No.	D	river		4					

*1 The square box in the model number will contain one of the following letters to indicate the power supply

voltage: A (Single-Phase 100-115 VAC), C (Single-Phase 200-230 VAC) or S (Three-Phase 200-230 VAC).

*2 The values inside the brackets [] represents the specification for electromagnetic brake type.

*3 The electromagnetic brakes are for holding the position when the power is off. They can not be used for complicated braking.

Also, a separate 24 VDC ±5%, 0.3 A min. power supply is required for the electromagnetic brake, along with the accessory electromagnetic brake type extension cable. *4 AS series: The resolution can be set to any one of 500 P/R, 1000 P/R, 5000 P/R, 10000 P/R with the resolution select

switch or resolution select switching signals. See page C-39 for details.

AS PLUS: The resolution can be set from 500 P/R to 10000 P/R by setting parameters.

How to Read Specifications Table→Page C-9

Note:

14

12

10

8

6

2

Torque [N·m]

120

100

Dordue [lp-in]

Direction of rotation of the motor and that of the gear output shaft are the same for unit type with reduction ratio 3.6:1, 7.2:1 and 10:1.

It is opposite for 20:1 and 30:1 ratio type.

Speed — Torque Characteristics How to Read Speed-Torque Characteristics → Page C-10

14

12

10

8

6

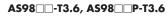
2

٥

14

Torque [N·m] Torque [Ib-in]

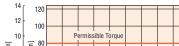
120

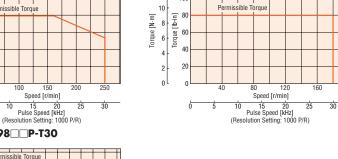

100

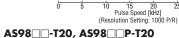
80

60

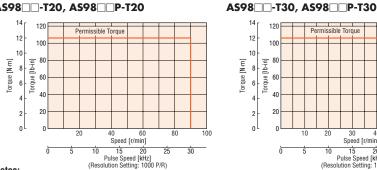
2(

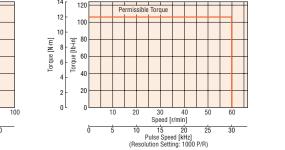

ŏ





Speed [r/min]


Permissible Torg


ŏ

Torque

Speed [r/min]

25 30

Notes:

• Pay attention to heat dissipation from motor and driver. In particular, remember that the motor will produce a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 212°F (100°C). [Under 176°F (75°C) is required to comply with UL or CSA standards.]

Specifications

		O Electromagnetic Brake	A\$46AA-N7.2	A\$46AA-N10			
	Ele	ectromagnetic Brake	A\$46MA-N7.2	A\$46MA-N10			
Model –	AS PLUS	O Electromagnetic Brake	AS46AAP-N7.2	AS46AAP-N10			
4	AS PLUS Ele	ectromagnetic Brake	A\$46MAP-N7.2	AS46MAP-N10			
Maximum Holding	Torque	lb-in (N⋅m)	13.2	(1.5)			
Rotor Inertia ^{*2} J		oz-in² (kg·m²)	0.37 (68×10 ⁻⁷) [0.45 (83×10 ⁻⁷)]			
Backlash	8	arc min (degrees)	2 (0.0)34°)			
Angle Error	а	arc min (degrees)	6 (0	.1°)			
Permissible Speed	Range	r/min	0~416	0~300			
Gear Ratio			7.2 : 1	10 : 1			
Resolution*4		1000 P/R	0.05°/pulse	0.036°/pulse			
Permissible Torque		lb-in (N⋅m)	13.2	(1.5)			
Maximum Torque**	i	lb-in (N⋅m)	17.7 (2)				
Power Source Volt	age·Frequency·M	aximum Input Current	Single-Phase 100-115 VAC -15% \sim $+10\%$ \cdot 50/60 Hz·3.3 A				
	Туре		Active when	power is off			
Electromagnetic	Powe	er Supply Input	24 VD0	24 VDC±5%			
Brake ^{*3}	Powe	er Consumption	2	W			
	Excita	ation Current	0.0	8 A			
Sta	tic Friction To	orque Ib-in (N·m)	6.6 (0).75)			
Weight*2	Moto	r lb. (kg)	1.6 (0.71) [1.8 (0.81)]			
worght	Drive	r lb. (kg)	1.8 (0.8)			
Dimension No.	Moto	r	7				
	Drive	r	AS=13 AS	S PLUS=14			

*2 The values inside the brackets [] represents the specification for electromagnetic brake type.

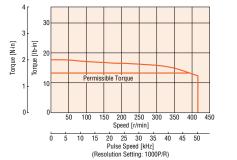
*3 The electromagnetic brakes are for holding the position when the power is off. They can not be used for complicated braking.

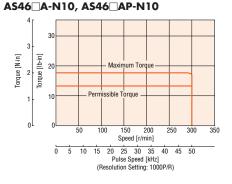
Also, a separate 24 VDC ±5%, 0.3 A min. power supply is required for the electromagnetic brake, along with the accessory electromagnetic brake type extension cable. *4 AS series: The resolution can be set to any one of 500 P/R, 1000 P/R, 5000 P/R, 10000 P/R with the resolution select

switch or resolution select switching signals. See page C-39 for details.

AS PLUS: The resolution can be set from 500 P/R to 10000 P/R by setting parameters.

*5 The value of Maximum Torque is for gear. For output torque for geared motor, refer to the Speed - Torque characteristics.


How to Read Specifications Table→Page C-9


Note:

Direction of rotation of the motor and that of the gear output shaft are the same.

Speed — Torque Characteristics How to Read Speed-Torque Characteristics → Page C-10

AS46 A-N7.2, AS46 AP-N7.2

Notes:

Pay attention to heat dissipation from motor and driver. In particular, remember that the motor will produce a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 212°F (100°C).

When using the motor with the dedicated driver, the driver's automatic current cutbuck at motor standstill function reduces maximum holding torque by approximately 50%.

Introduction

AS PLUS

Accessorie

PN Geared Type

Specifications

cation	3						
٨٥	W/O Electromagnetic Brake	A\$66AN5	AS66AN7.2	AS66A	AS66AN25	AS66AN36	AS66AN50
AJ	Electromagnetic Brake	AS66MN5	AS66MN7.2	AS66MN10	AS66MN25	AS66MN36	AS66MN50
	W/O Electromagnetic Brake	AS66A P-N5	AS66A_P-N7.2	AS66A P-N10	AS66A P-N25	AS66A P-N36	AS66A P-N50
AJ PLUJ	Electromagnetic Brake	AS66M_P-N5	AS66M_P-N7.2	AS66MDP-N10	AS66M P-N25	AS66MDP-N36	AS66MDP-N50
g Torque	lb-in (N⋅m)	30 (3.5)	35 (4.0)	44 (5.0)		70 (8.0)	
	oz-in² (kg·m²)			2.2 (405×10 ⁻⁷)	[3.1 (564×10 ⁻⁷)]		
	arc min (degrees)		2 (0.034°)			3 (0.05°)	
	arc min (degrees)			5 (0.)84°)		
d Range	r/min	0~600	0~416	0~300	0~120	0~83	0~60
		5:1	7.2 : 1	10:1	25 : 1	36 : 1	50 : 1
	1000 P/R	0.072°/pulse	0.05°/pulse	0.036°/pulse	0.0144°/pulse	0.01°/pulse	0.0072°/pulse
ue	lb-in (N⋅m)	30 (3.5)	35 (4.0)	44 (5.0)		70 (8.0)	
9 ^{*5}	lb-in (N⋅m)	61 (7)	79 (9)	97 (11)	141 (16)	177 (20)	177 (20)
			$\square = \mathbf{A}$ for Sing	le-Phase100-115 VA	ΛC –15% \sim +10% \cdot	50/60 Hz·5.0 A	
oltage.Frequen	cy-Maximum Input Current		$\square = \mathbf{C}$ for Sing	le-Phase 200-230 VA	ΛC –15% \sim +10% \cdot	50/60 Hz·3.0 A	
			$\square = \mathbf{S}$ for Three	e-Phase 200-230 VA	ΛC –15% \sim +10% \cdot	50/60 Hz·1.5 A	
T	уре			Active when	power is off		
P	ower Supply Input			24 VD	C±5%		
P	ower Consumption			6	W		
E	xcitation Current			0.2	5 A		
Static Frictio	n Torque Ib-in (N·m)	15.4 (1.75)	17.7 (2.0)	22 (2.5)		35 (4.0)	
Ν	lotor lb. (kg)		3.3 (1.5) [3.9 (1.75)]]		3.7 (1.7) [4.3 (1.95)]
D	river Ib. (kg)			1.8	(0.8)		
N	lotor			1	3		
D	river			AS=13 A	S PLUS=14		
	AS AS PLUS g Torque ed Range ue y*5 oltage-Frequenu P E Static Frictio M D M	AS Electromagnetic Brake AS PLUS W/0 Electromagnetic Brake g Torque Ib-in (N·m) oz-in² (kg·m²) arc min (degrees) arc min (degrees) arc min (degrees) arc min (degrees) bd Range 1000 P/R ue Ib-in (N·m) se5 Ib-in (N·m) oltage-Frequency-Maximum Input Current Type Power Supply Input Power Consumption Excitation Current Static Friction Torque Ib-in (N·m) Motor Ib. (kg)	AS W/0 Electromagnetic Brake Electromagnetic Brake AS66AN5 AS66MN5 AS PLUS W/0 Electromagnetic Brake Electromagnetic Brake AS66A_P-N5 AS66A_P-N5 g Torque Ib-in (N·m) 30 (3.5) oz-in² (kg·m²) arc min (degrees) arc min (degrees) arc min (degrees) d Range r/min 0~600 5 : 1 1000 P/R 0.072°/pulse ue Ib-in (N·m) 30 (3.5) sets Ib-in (N·m) 61 (7) oltage-Frequency-Maximum Input Current 61 (7) power Supply Input Power Consumption Excitation Current 5tatic Friction Torque Ib-in (N·m) Static Friction Torque Ib-in (N·m) 15.4 (1.75) Motor Ib. (kg) Driver Ib. (kg)	AS W/0 Electromagnetic Brake AS66AN5 AS66AN7.2 AS PLUS W/0 Electromagnetic Brake AS66A_P-N5 AS66A_P-N7.2 g Torque Ib-in (N·m) 30 (3.5) 35 (4.0) g Torque Ib-in (N·m) 30 (3.5) 35 (4.0) arc min (degrees) 2 (0.034°) arc min (degrees) 2 (0.034°) arc min (degrees) 0~600 0~416 5 : 1 7.2 : 1 1000 P/R 0.072°/pulse 0.05°/pulse 0.05°/pulse ue Ib-in (N·m) 30 (3.5) 35 (4.0) x*6 Ib-in (N·m) 30 (3.5) 35 (4.0) power Supply Input	AS W/0 Electromagnetic Brake AS66A -N5 AS66A -N7.2 AS66A -N10 AS PLUS W/0 Electromagnetic Brake AS66A -N5 AS66A -N7.2 AS66A -N10 AS PLUS W/0 Electromagnetic Brake AS66A -N5 AS66A -N7.2 AS66A -N10 g Torque Ib-in (N-m) 30 (3.5) AS66A -N7.2 AS66A -P.N10 g Torque Ib-in (N-m) 30 (3.5) 35 (4.0) 44 (5.0) acc min (degrees) 2 (0.034°) 32 (405×10 ⁻⁷) 32 (405×10 ⁻⁷) arc min (degrees) 2 (0.034°) 35 (4.0) 44 (5.0) arc min (degrees) 2 (0.034°) 35 (4.0) 44 (5.0) arc min (degrees) 2 (0.034°) 35 (4.0) 44 (5.0) arc min (degrees) 2 (0.034°) 35 (4.0) 44 (5.0) arc min (degrees) 5 (1 7.2 (1 10 : 1 10000 P/R 0.072°/pulse 0.05°/pulse 0.036°/pulse ue Ib-in (N-m) 30 (3.5) 35 (4.0) 44 (5.0) 3**5 Ib-in (N-m) 61 (7) 79 (9) 97 (11)	AS W/0 Electromagnetic Brake AS66AN5 AS66AN7.2 AS66AN10 AS66AN25 AS PLUS W/0 Electromagnetic Brake AS66A_P-N5 AS66A_P-N7.2 AS66A_P-N10 AS66A_P-N25 Isomagnetic Brake AS66A_P-N5 AS66A_P-N7.2 AS66A_P-N10 AS66A_P-N25 g Torque Ib-in (N-m) 30 (3.5) 35 (4.0) 44 (5.0) oz-in² (kg·m²) 2.2 (405×10 ⁻⁷) [3.1 (564×10 ⁻⁷)] arc min (degrees) 2 (0.034°) be in (N-m) 30 (3.5) 35 (4.0) 44 (5.0) set 5 (1 7.2 : 1 10 : 1 25 : 1 1000 P/R 0.072°/pulse 0.036°/pulse 0.0144°/pulse ue Ib-in (N-m) 30 (3.5) 35 (4.0) 44 (5.0) set for Single-Phase 100-115 VAC – 15%~+10% · = C for Single-Phase 200-230 VAC – 15%~+10% · oltage-Frequency-Maximum Input Current Corrent Corrent Corrent Power Supply In	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

*1 The square box in the model number will contain one of the following letters to indicate the power supply

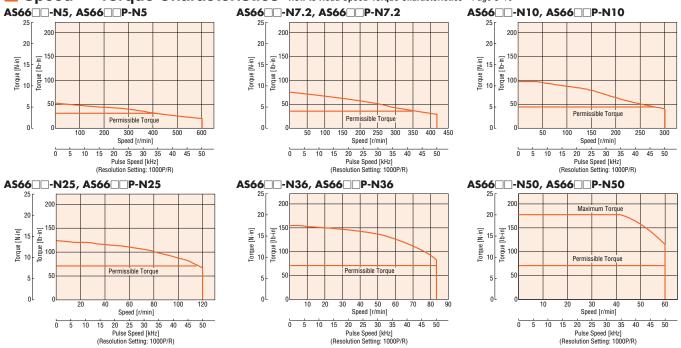
voltage: A (Single-Phase 100-115 VAC), C (Single-Phase 200-230 VAC) or S (Three-Phase 200-230 VAC).

*2 The values inside the brackets [] represents the specification for electromagnetic brake type.

*3 The electromagnetic brakes are for holding the position when the power is off. They can not be used for complicated braking.

Also, a separate 24 VDC ±5%, 0.3 A min. power supply is required for the electromagnetic brake, along with the accessory electromagnetic brake type extension cable. *4 AS series: The resolution can be set to any one of 500 P/R, 1000 P/R, 5000 P/R, 10000 P/R with the resolution select

switch or resolution select switching signals. See page C-39 for details.


AS PLUS: The resolution can be set from 500 P/R to 10000 P/R by setting parameters.

*5 The value of Maximum Torque is for gear. For output torque for geared motor, refer to the Speed - Torque characteristics.

How to Read Specifications Table→Page C-9

Note: Direction of rotation of the motor and that of the gear output shaft are the same.

Speed — Torque Characteristics How to Read Speed-Torque Characteristics → Page C-10

Notes:

• Pay attention to heat dissipation from motor and driver. In particular, remember that the motor will produce a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 212°F (100°C). [Under 176°F (75°C) is required to comply with UL or CSA standards.]

PN Geared Type

Motor Frame Size: 3.54 in. (90 mm)

Specifi	cation	S						° 377 ns (E
	AS	W/O Electromagnetic Brake	AS98AN5	AS98AN7.2	AS98AN10	AS98AN25	AS98AN36	AS98AN50
Model ^{*1}	AS	Electromagnetic Brake	AS98MN5	AS98MN7.2	AS98M[]-N10	AS98MN25	AS98MD-N36	AS98MN50
woder	AS PLUS	W/O Electromagnetic Brake	AS98A P-N5	AS98A_P-N7.2	AS98ADP-N10	AS98A P-N25	AS98A_P-N36	AS98ADP-N50
	AS PLUS	Electromagnetic Brake	AS98M_P-N5	AS98M_P-N7.2	AS98MDP-N10	AS98M_P-N25	AS98MDP-N36	AS98MDP-N50
Maximum Holdi	ng Torque	lb-in (N⋅m)	88 (10)	123 (14)	177 (20)		320 (37)	-
Rotor Inertia ^{*2} J		oz-in² (kg·m²)			7.7 (1400×10 ⁻⁷)	[8.5 (1560×10 ⁻⁷)]		
Backlash		arc min (degrees)		2 (0.034°)			3 (0.05°)	
Angle Error		arc min (degrees)			4 (0.	067°)		
Permissible Spe	ed Range	r/min	0~600	0~416	0~300	0~120	0~83	0~60
Gear Ratio			5:1	7.2 : 1	10:1	25 : 1	36 : 1	50 : 1
Resolution*4		1000 P/R	0.072°/pulse	0.05°/pulse	0.036°/pulse	0.0144°/pulse	0.01°/pulse	0.0072°/pulse
Permissible Toro	que	lb-in (N⋅m)	88 (10) 123 (14) 177 (20) 320 (37)					
Maximum Torqu	e ^{*5}	lb-in (N⋅m)	240 (28)	300 (35)	300 (35)	490 (56)	530 (60)	530 (60)
Power Source	Voltage-Frequen	cy·Maximum Input Current		$\Box = \mathbf{C}$ for Sing	le-Phase 200-230 VA	$C -15\% \sim +10\% \cdot C -10\% \circ +10\% \circ C -10\% \circ -10\% \circ$	50/60 Hz·3.5 A	
	T	уре			Active when	power is off		
Electromagnetic	Р	ower Supply Input			24 VD	C±5%		
Brake*3	P	ower Consumption			6	W		
DIAKE	E	xcitation Current			0.2	5 A		
	Static Frictio	n Torque Ib-in (N·m)	39 (4.5)	57 (6.45)	79 (9)		163 (18.5)	
Weight*2	N	lotor Ib. (kg)		8.8 (4.0) [9.7 (4.4)]			10 (4.7) [11 (5.1)]	
weight	D	vriver Ib. (kg)			1.8	(0.8)		
Dimension No.	N	lotor				9		
DIMENSION NO.	D	river			AS=13 A	5 PLUS=14		

*1 The square box in the model number will contain one of the following letters to indicate the power supply

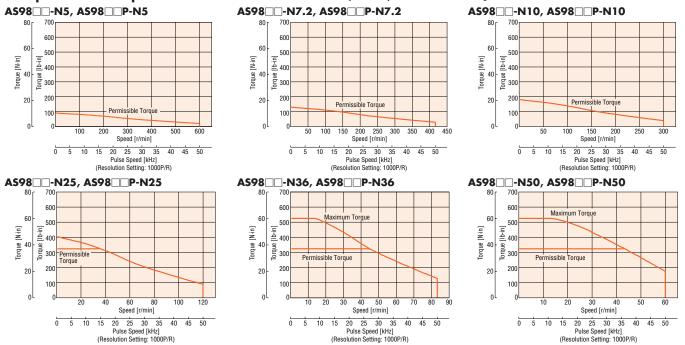
voltage: A (Single-Phase 100-115 VAC), C (Single-Phase 200-230 VAC) or S (Three-Phase 200-230 VAC).

*2 The values inside the brackets [] represents the specification for electromagnetic brake type.

*3 The electromagnetic brakes are for holding the position when the power is off. They can not be used for complicated braking.

Also, a separate 24 VDC ±5%, 0.3 A min. power supply is required for the electromagnetic brake, along with the accessory electromagnetic brake type extension cable. *4 AS series: The resolution can be set to any one of 500 P/R, 1000 P/R, 5000 P/R, 10000 P/R with the resolution select

switch or resolution select switching signals. See page C-39 for details.


AS PLUS: The resolution can be set from 500 P/R to 10000 P/R by setting parameters.

*5 The value of Maximum Torque is for gear. For output torque for geared motor, refer to the Speed - Torque characteristics.

How to Read Specifications Table→Page C-9

Note: Direction of rotation of the motor and that of the gear output shaft are the same.

Speed — Torque Characteristics How to Read Speed-Torque Characteristics → Page C-10

Stepping Motors

Introduction

AS PLUS

ASC

RR

CFKI

SIS

PMC

UMK

CSK

PK/PV

Ŗ

SC8800E

SG8030J

SMK

Accessories

Controllers

• Pay attention to heat dissipation from motor and driver. In particular, remember that the motor will produce a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 212°F (100°C). [Under 176°F (75°C) is required to comply with UL or CSA standards.]

HG Geared Type Motor Frame Size: □ 1.65 in. (□ 42 mm), □ 2.36 in. (□ 60 mm), □ 3.54 in. (□ 90 mm)

Specifications

RU (Except for AS46 type)

	Janon	•				() /
	AS	W/O Electromagnetic Brake	AS46AA2-H50	AS46AA2-H100	AS66A 2-H50	AS66A2-H100	AS98AH50	AS98AH100
Model ^{*1}	AJ	Electromagnetic Brake	AS46MA2-H50	AS46MA2-H100	AS66M2-H50	AS66M2-H100	AS98MH50	AS98MD-H100
MOUEI	AS PLUS	W/O Electromagnetic Brake	AS46AAP2-H50	AS46AAP2-H100	AS66A_P2-H50	AS66A P2-H100	AS98A P-H50	AS98A P-H100
	AJ PLUJ	Electromagnetic Brake	AS46MAP2-H50	AS46MAP2-H100	AS66M P2-H50	AS66M_P2-H100	AS98MDP-H50	AS98M_P-H100
Maximum Holdin	g Torque	lb-in (N⋅m)	30 (3.5)	44 (5.0)	48 (5.5)	70 (8.0)	220 (25)	320 (37)
Rotor Inertia ^{*2} J		oz-in² (kg·m²)	0.46 (85×10 ⁻⁷) [0.55 (100×10 ⁻⁷)]	2.3 (422×10 ⁻⁷) [3.18 (581×10 ⁻⁷)]	7.8 (1417×10 ⁻⁷)	[8.6 (1577×10 ⁻⁷)]
Permissible Spee	d Range	r/min	0~70	0~35	0~70	0~35	0~70	0~35
Gear Ratio			50 : 1	100 : 1	50 : 1	100 : 1	50 : 1	100 : 1
Resolution*4		1000 P/R	0.0072°/pulse	0.0036°/pulse	0.0072°/pulse	0.0036°/pulse	0.0072°/pulse	0.0036°/pulse
Permissible Torqu	le	lb-in (N⋅m)	30 (3.5)	44 (5.0)	48 (5.5)	70 (8.0)	220 (25)	320 (37)
Maximum Torque		lb-in (N⋅m)	73 (8.3)	97 (11)	159 (18)	240 (28)	300 (35)	480 (55)
Lost Motion		aro min	Max. 1.5	Max. 1.5	Max. 0.7	Max. 0.7	Max. 1.5	Max. 1.5
(Load Torque)		arc min	(±0.16 N⋅m)	(±0.2 N⋅m)	(±0.28 N⋅m)	(±0.39 N⋅m)	(±1.2 N⋅m)	(±1.2 N⋅m)
	Voltaga	Frequency Maximum	Single-Phase	Cingle Dhase 100 115 VAC		-15%~+10%.50/60 Hz 5 A	Single-Phase 100-115 VAC	-15%~+10%·50/60 Hz 6 A
Power Source	vonage	Input Current	Single-Phase 100-115 VAC −15%~+10%·50/60 Hz 3.3 A		Single-Phase 200-230 VAC $-15\%{\sim}{+}10\%{\cdot}50/60$ Hz 3 A		Single-Phase 200-230 VAC $-15\%{\sim}{+}10\%{\cdot}50{/}60$ Hz 3.5 A	
		input Guitein	-13/0~+10/0	-50/00 HZ 5.5 A	Three-Phase 200-230 VAC -15%~+10%-50/60 Hz 1.5 A		Three-Phase 200-230 VAC -15%~+10%·50/60 Hz 1.9 A	
	Ty	уре			Active when	power is off		
Electromagnetic	Р	ower Supply Input			24 VD	C±5%		
Brake ^{*3}	Р	ower Consumption	2	W	6	W	6	W
DIAKE	E	xcitation Current	0.0	08 A	0.2	5 A	0.2	25 A
S	tatic Frictio	n Torque Ib-in (N⋅m)	15.4 (1.75)	22 (2.5)	24 (2.75)	35 (4)	110 (12.5)	163 (18.5)
Weight*2	N	lotor lb. (kg)	1.5 (0.7)	[1.8 (0.8)]	3.1 (1.4) [3.6 (1.65)]	8.6 (3.9)	[9.5 (4.3)]
WEIGHT	D	river Ib. (kg)			1.8	(0.8)		
Dimension No.	N	lotor	1	0	-	1	[1	2
	D	river			AS=13 A	S PLUS=14		

*1 The square box in the model number will contain one of the following letters to indicate the power supply

voltage: A (Single-Phase 100-115 VAC), C (Single-Phase 200-230 VAC) or S (Three-Phase 200-230 VAC).

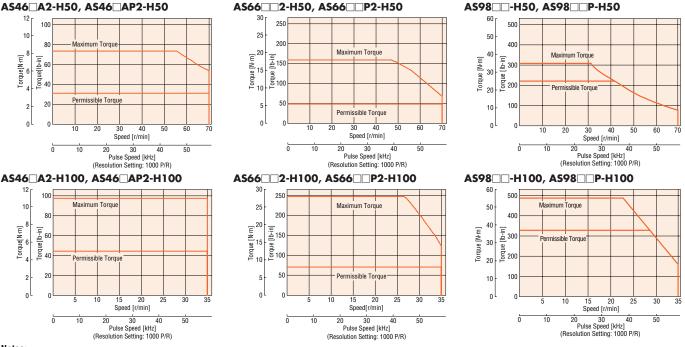
*2 The values inside the brackets [] represents the specification for electromagnetic brake type.

*3 The electromagnetic brakes are for holding the position when the power is off. They can not be used for complicated braking.

Also, a separate 24 VDC \pm 5%, 0.3 A min. power supply is required for the electromagnetic brake, along with the accessory electromagnetic brake type extension cable. *4 AS series: The resolution can be set to any one of 500 P/R, 1000 P/R, 5000 P/R, 10000 P/R with the resolution select

switch or resolution select switching signals. See page C-39 for details.

AS PLUS: The resolution can be set from 500 P/R to 10000 P/R by setting parameters.


How to Read Specifications Table→Page C-9

Note:

• The inertia represents a sum of the inertia at the harmonic gear converted to a motor shaft value, and the rotor inertia. Direction of rotation of the motor and that of the gear output shaft are the opposite.

Speed — Torque Characteristics How to Read Speed-Torque Characteristics → Page C-10

AS66 2-H50, AS66 P2-H50 AS46_A2-H50, AS46_AP2-H50

Notes:

Pay attention to heat dissipation from motor and driver. In particular, remember that the motor will produce a considerable amount of heat under certain conditions. In order to prevent fatigue of the gear grease in the harmonic gear, keep the temperature of the gear case under 158°F (70°C).

Introduction

AS PLUS

Common Specifications

AS Series

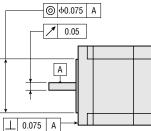
Speed and Position Control Command	Pulse Train Input
Maximum Input Pulse Frequency	250 kHz
Protective Functions	Overheat, Overload, Overvoltage, Speed Error, Overcurrent, OverSpeed, EEPROM Data Error, Sensor Error, System Error
Input Signals	Photocoupler Input (optically isolated), Equivalent Input Impedance : 220 Ω , Input Current 7~20 mA
Input Signals	(Pulse Signal, Rotation Direction Signal, All Windings Off Signal, Alarm Clear Signal, Resolution Select Signal)
	Photocoupler, Open-Collector Output, External use condition: 30 VDC maximum, 15 mA Maximum
Output Signals	(Positioning Completion Signal, Alarm Signal, Excitation Timing Signal, ASG•BSG Signal)
Output Signals	Line Driver Output: Equivalent of 26C31
	(Timing Signal, ASG•BSG Signal)

AS PLUS

	Incremental (relative distance) mode/Absolute (absol	ute positioning) mode.					
Positioning	One-shot operation/Linked operation (A maximum of	4 profiles can be linked)					
Control	Maximum Operating Ranges	. ,					
	• Steps: -8388608~8388607 (1 each) • Opera	ating speed: 10 Hz \sim 500,000	Hz (500 kHz) • Acceleration/deceleration rate*: 10~50,000 msec				
Operating	Indexing (Positioning operation)	Scan (Continuous operati	on) • Linked Profile				
Modes	Return (Return to electrical home position)	Home Operation (Return	to mechanical home position)				
Mechanical Home Hunting Function	Home hunting operation is performed from the entire	range using mechanical posi	tion detection signals (+LS, -LS, HOMELS).				
	 Setting function for speed-filter value 	 Current setting function 	Electronic gear function				
Other Functions	 Setting function for direction of motor rotation 	• Emergency stop function	Over-travel function				
	 Software over-travel function 	 Alarm trace-back function 	Daisy-chain connections				
Input Signals	AC Photocoupler input						
iliput signals	Control inputs: 24 VDC, input resistance 4.7 k Ω (X0 \sim X7, START, E-STOP, HOMELS, +LS, -LS, SENSOR)						
Output Signals	Photocoupler/Open Collector Output	External operating conditio	ns; 30 VDC or below, 4 \sim 8 mA (Y0 \sim Y7, ALM)				
	Communication Standard: RS-232C conformity	Transmit system: Asynchro	nous communication, NRZ (Non Return to Zero), Full duplex				
Terminal	Data length: 8 bits, 1 stop bit, No parity	Transmit speed: 9600 bps					
Emulation	Connector specification: Modular (4 wires, 4 pins)						
	Pin arrangement: RS232 Compatible	Protocol: TTY (CR+LF)					
Lloar Drogram	Maximum number of programs: 14 programs (includi	ing STARTUP program)	Maximum lines per program: 64 lines				
User Program	Maximum commands per 1 line: 1 command (Single	state)	Maximum program variables: 26 variables (A~Z)				

* The rates of acceleration and deceleration can be set separately.

General Specifications

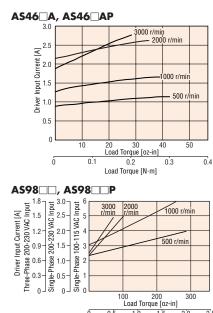

This is the value after rated operation at normal temperature and normal humidity.

		Motor	Driver		
Insulation Clas	SS	Class B [266°F (130°C)]	—		
Insulation Resistance		 100 MΩ minimum when measured by a 500 VDC megger between the following places: Frame-Windings Frame-Electromagnetic brake windings 	100 MΩ minimum when measured by a 500 VDC megger between the following places: • Frame-Power supply input terminal • I/O-Power supply input terminal		
Dielectric Stre	ngth	Sufficient to withstand the following for one minute: • Frame-Windings 1.5 kV (1.0 kV for AS46) 50 Hz • Frame-Electromagnetic brake windings 1.0 kV 50 Hz	Sufficient to withstand the following for one minute: • Frame-Power supply input terminal 1.5 kV 50 Hz • I/O-Power supply input terminal 2.3 kV (3.0 kV for 200-230 VAC) 50 Hz: AS 1.8 kV 50 Hz: AS PLUS		
Operating	Ambient Temperature	0°C \sim +50°C (32°F \sim 122°F), nonfreezing	AS PLUS: 0°C~+40°C (32°F~104°F) AS: 0°C~+50°C (32°F~122°F), nonfreezing		
Environment (In Operation)	Ambient Humidity	85% or less (noncondensing)			
	Atmosphere	No corrosive gases	s, dust, water or oil.		
Static Angle E	rror	±5 minutes	—		
Shaft Runout		0.002 inch (0.05 mm) T.I.R.*	—		
Concentricity		0.003 inch (0.075 mm) T.I.R.*	—		
Perpendicular	ity	0.003 inch (0.075 mm) T.I.R.*	_		

* T.I.R.(Total Indicator Reading) : Refers to the total dial gauge reading when the measurement section is rotated 1 revolution centered on the reference axis center. Note:

• Do not measure insulation resistance or perform the dielectric

strength test while the motor and driver are connected.



Load Torque — Driver Input Current Characteristics

This is the relationship between the load torque and driver input current at each speed when the motor is operated. From these characteristics, the current capacity required when used for multiple axes can be estimated. For the Geared Type, calculate the power capacity in terms of the speed and the torque at the motor shaft.

Motor shaft speed = Gear output shaft speed × Gear ratio [r/min]

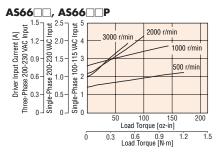
Gear output shaft torque Motor shaft torque = [oz-in (N·m)] Gear ratio

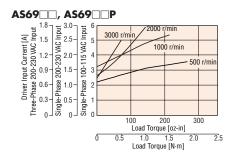
3000 r/min

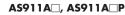
Ó 0.5 2,00,0

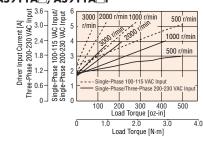
1000 r/min

500 r/mir


300

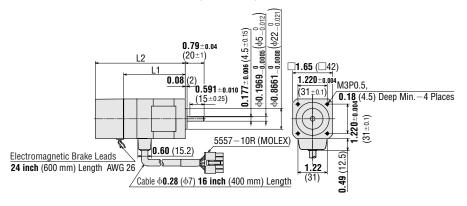

2.5


100 200 Load Torque [oz-in]


Load Torque [N·m]

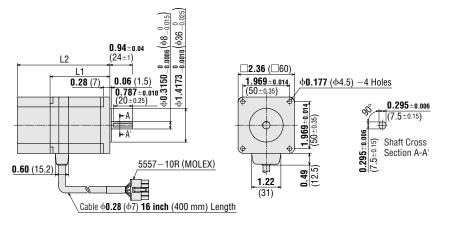
1.5

Permissible Overhung Load and Permissible Thrust Load


			Overhung Loa		onit = opp	er values: Ib./Lower value
Madal		Threat Lood				
Model	0	1	om Shaft End		0.70 (00)	Thrust Load
	4.5	0.2 (5) 5.6	0.39 (10) 7.6	0.59 (15)	0.79 (20)	
AS46	20	25	34	52		
A\$66	14.1	16.8	21	29	42	Keep thrust loads
AS69	63	75	95	130	190	below the weight
		65	76			of the motor used.
	58			87	108	
	260	290	340	390	480	
AS46□-T3.6						
AS46 - T7.2	2.2	3.1	4.5	6.7		3.3
AS46	10	14	20	30		15
AS46 - T20						
AS46T30						
AS66 - T3.6						
AS66 - T7.2	15.7	18	22	27	33	9
AS66T10		80	100	120	150	40
AS66□-T20	10	00	100	120	150	01
AS66T30						
AS98□-T3.6						
AS98T7.2	49	56	67	78	90	
AS98T10	220				400	
AS98□-T20	220	250	300	350	400	
AS98T30						
AS46N7.2	22	27	33	42		
AS46N10	100	120	150	190		22
	45	49	56	63	72	100
AS66□-N5	200	220	250	280	320	
AS66 - N7.2	56	60	67	76	87	
AS66 - N10	250	270	300	340	390	
AS66 -N25						
AS66 -N36		81	90	101	117	
AS66N50	330	360	400	450	520	
	108	117	123	130	139	
AS98□-N5	480	520	550	580	620	
AS98N7.2	108	121	135	153	177	
AS98	480	540	600	680	790	
	191	210	230	240	260	67
AS98N25	850	940	1050	1110	1190	300
	200	230	250	270	290	
AS98N36	930	1030	1150	1220	1300	
			290			
AS98N50	230	260		310	330	
	1050	1160	1300	1380	1490	
AS4622-H50	40	49	60	81	114	54
AS4622-H100	180	220	270	360	510	240
AS6622-H50	72	83	99	123	162	105
AS6622-H100	320	370	440	550	720	470
AS98H50	240	250	270	290	310	290
AS98H100	1090	1150	1230	1310	1410	1300

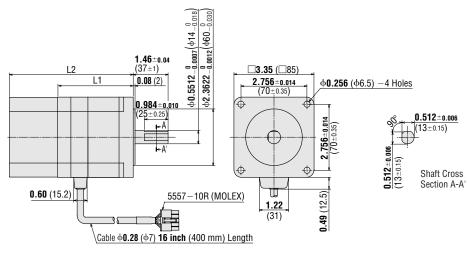
* These values are common to the AS Series, the AS PLUS Series and all electromagnetic brake models.

Introduction


Standard Type

1 Motor Frame Size: 1.65 in. (42 mm)

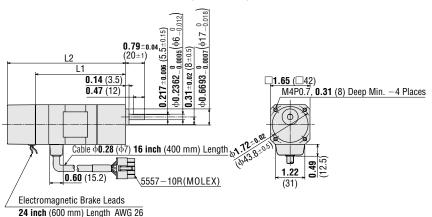
Model	Motor Model	L1 inch (mm)	L2 inch (mm)	Weight Ib. (kg)	DXF
AS46AA AS46AAP	ASM46AA	2.56 (64.9)	_	1.1 (0.5)	B192
AS46MA AS46MAP	ASM46MA		3.74 (94.9)	1.3 (0.6)	B193


2 Motor Frame Size: 2.36 in. (60 mm)

Model	Motor Model	L1 inch (mm)	L2 inch (mm)	Weight Ib. (kg)	DXF
AS66A AS66A P	ASM66A	2.50 (63.6)		1.9 (0.85)	B194
AS66M AS66M P	ASM66M		3.88 (98.6)	2.4 (1.1)	B195
AS69A AS69A P	ASM69A	3.72 (94.6)	_	3.1 (1.4)	B272
AS69M AS69M P	ASM69M		5.1 (129.6)	3.6 (1.65)	B273

• Enter the power supply voltage \mathbf{A} , \mathbf{C} or \mathbf{S} in the box (\square) within the model number.

3 Motor Frame Size: □3.35 in. (□85 mm)

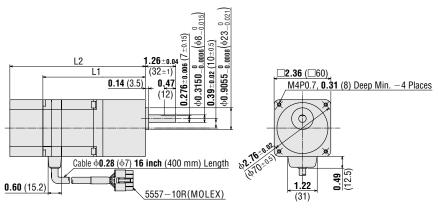


Model	Motor Model	L1 inch (mm)	L2 inch (mm)	Weight Ib. (kg)	DXF
AS98A AS98A P	ASM98A	3.15 (80)	_	4.0 (1.8)	B196
A\$98M A\$98M P	ASM98M		5.16 (131)	4.8 (2.2)	B235
A\$911A A\$911A P	ASM911A	4.33 (110)		6.6 (3.0)	B264

• Enter the power supply voltage A, C, or S in the box () within the model number.

TH Geared Type

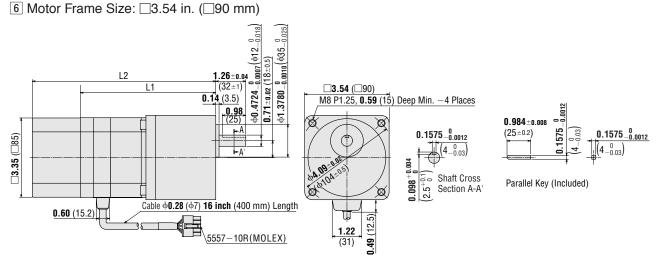
4 Motor Frame Size: 1.65 in. (42 mm)



Model	Motor Model	Gear Ratio	L1 inch (mm)	L2 inch (mm)	Weight Ib. (kg)	DXF
AS46AA-T	ASM46AA-T		3.76 (95.4)		1.4 (0.65)	B199
AS46AAP-T		3.6 , 7.2 ,	3.70 (95.4)		1.4 (0.03)	D199
AS46MA-T	ASM46MA-T	10, 20, 30		4.04 (105.4)	1.7 (0.75)	B200
AS46MAP-T	A3///40///A-1			4.94 (125.4)	1.7 (0.75)	D200

• Enter the gear ratio in the box (\Box) within the model number.

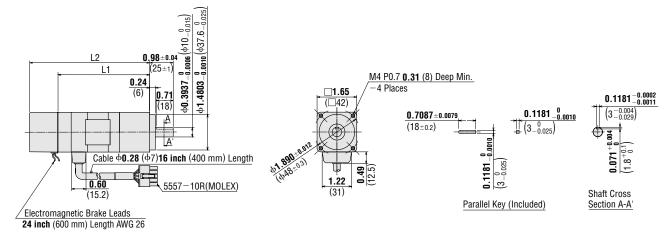
Introduction


5 Motor Frame Size: 2.36 in. (60 mm)

Model	Motor Model	Gear Ratio	L1 inch (mm)	L2 inch (mm)	Weight Ib. (kg)	DXF
AS66A -T	ASM66A -T	3.6 , 7.2 ,	4.28 (108.6)	_	2.8 (1.25)	B201
AS66A P-T						5201
AS66MT_		10, 20, 30		E CE (140 C)	22(15)	B202
AS66M P-T	ASM66M T			5.65 (143.6)	3.3 (1.5)	DZUZ

• Enter the gear ratio in the box (\Box) within the model number.

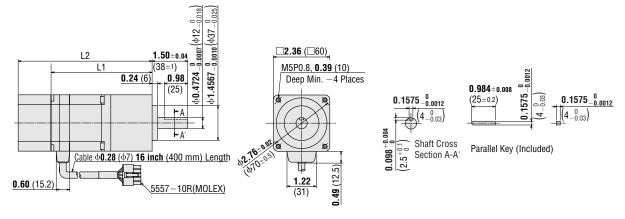
• Enter the power supply voltage A, C or S in the box () within the model number.


Model	Motor Model	Gear Ratio	L1 inch (mm)	L2 inch (mm)	Weight Ib. (kg)	DXF
AS98A -T AS98A P-T	ASM98A -T	3.6, 7.2, 10, 20, 30	5.69 (144.5)	_	6.6 (3.0)	B203
A\$98MT_ A\$98M_P-T_	ASM98M-T			7.70 (195.5)	7.5 (3.4)	B236

• Enter the gear ratio in the box (\Box) within the model number.

• Enter the power supply voltage A, C or S in the box () within the model number.

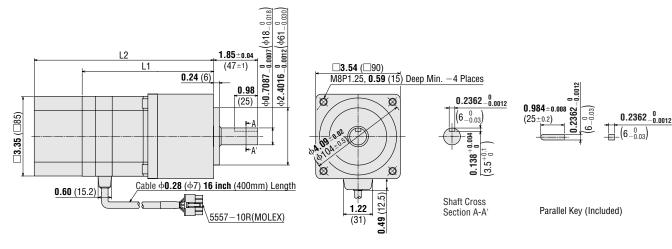
PN Geared Type


7 Motor Frame Size: 1.65 in. (42 mm)

Model	Motor Model	Gear Ratio	L1 inch (mm)	L2 inch (mm)	Weight Ib. (kg)	DXF
A\$46AA-N A\$46AAP-N	ASM46AA-N□	7.2, 10	3.81 (96.9)	_	1.6 (0.71)	B306
AS46MA-N AS46MAP-N	ASM46MA-N		—	5.0 (126.9)	1.8 (0.81)	B307

• Enter the gear ratio in the box (\Box) within the model number.

8 Motor Frame Size: 2.36 in. (60 mm)

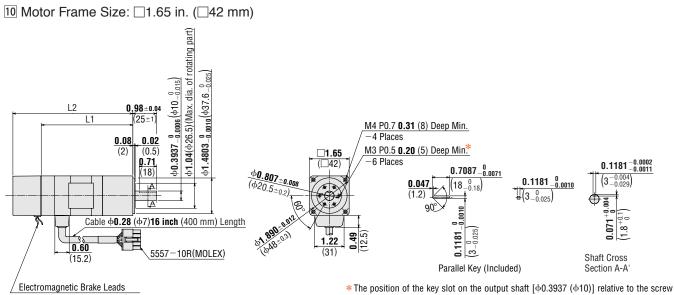


Model	Motor Model	Gear Ratio	L1 inch (mm)	L2 inch (mm)	Weight Ib. (kg)	DXF
AS66A -N AS66A P-N	ASM66A -N	5, 7.2 , 10	4.24 (107.6)		3.3 (1.5)	B226
AS66A - N - AS66A P-N -	ASM66A -N	25, 36, 50	4.87 (123.6)		3.7 (1.7)	B228
AS66M -N AS66M P-N	ASM66M -N	5, 7.2 , 10		5.61 (142.6)	3.9 (1.75)	B227
AS66M -N AS66M P-N	ASM66M -N	25, 36, 50		6.24 (158.6)	4.3 (1.95)	B229

• Enter the gear ratio in the box (\Box) within the model number.

• Enter the power supply voltage **A**, **C** or **S** in the box () within the model number.

Introduction

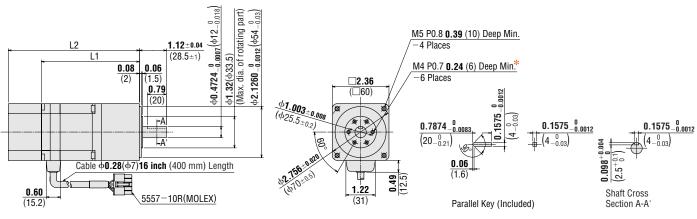


Model	Motor Model	Gear Ratio	L1 inch (mm)	L2 inch (mm)	Weight Ib. (kg)	DXF
AS98A -N AS98A P-N	ASM98A -N	5, 7.2 , 10	5.51 (140)		8.8 (4.0)	B230
AS98A -N AS98A P-N	ASM98A -N	25, 36, 50	0 6.42 (163)		10 (4.7)	B231
AS98MN_ AS98M_P-N_	ASM98M - N	5, 7.2 , 10		7.52 (191)	9.7 (4.4)	B239
AS98MN_ AS98M_P-N_	ASM98M - N	25, 36, 50		8.43 (214)	11 (5.1)	B240

• Enter the gear ratio in the box (\Box) within the model number.

• Enter the power supply voltage A, C or S in the box () within the model number.

HG Geared Type


24 inch (600 mm) Length AWG 26

The position of the key slot on the output shaft [\$\phi0.3937\$ (\$\phi10]\$) relative to the screw holes on a maximum diameter of \$\phi1.04\$ (\$\phi26.5\$) on the rotating part is arbitrary.

Model	Motor Model	Gear Ratio	L1 inch (mm)	L2 inch (mm)	Weight Ib. (kg)	DXF
AS46AA2-H AS46AAP2-H	ASM46AA2-H□	50, 100	3.81 (96.9)	_	1.5 (0.7)	B308
AS46MA2-H AS46MAP2-H	ASM46MA2-H			5.0 (126.9)	1.8 (0.8)	B309

• Enter the gear ratio in the box (\Box) within the model number.

11 Motor Frame Size: 2.36 in. (60 mm)

* The position of the key slot on the output shaft [\$\phi0.4724\$ (\$\phi12\$)] relative to the screw holes on a maximum diameter of ϕ 1.32 (ϕ 33.5) on the rotating part is arbitrary.

Model	Motor Model	Gear Ratio	L1 inch (mm)	L2 inch (mm)	Weight Ib. (kg)	DXF
AS66A 2-H AS66A P2-H	ASM66A2-H	50, 100	4.08 (103.6)		3.1 (1.4)	B310
A\$66M_2-H_ A\$66M_P2-H_	ASM66M2-H			5.46 (138.6)	3.6 (1.65)	B311

• Enter the gear ratio in the box(
) within the model number.

• Enter the power supply voltage A, C or S in the box () within the model number.

12 Motor Frame Size: 3.54 in. (90 mm) 0.018 L2 1.57±0.05 ф18 L1 (40±1.2) J±1.2) 14 3.5) 1.10 (28) 0.98(25) 1.10 0.98(25) 0.59(15) 0.14 (3.5) 1.10 (28) 0.12(3) \$\phi 0.87(\$\phi 22\$ □3.54 (□90) **♦0.362** (**♦**9.2)-4 Holes 0.9843_0.0083 0.2362_0.0012 0 -0.0014 $(6_{-0.03}^{0})$ 0.09 **φ1.97**(φ50) (25_{-0.21} 0.035 $(6_{-0.03})$ (2.4)4**3.2677** $0.138^{+0.004}_{-0.004}$ φ83 0 -0.0012 ŀΑ 90 0.2362 $(6_{-0.03}^{0})$ b4.09 10104= Cable **0.28**(**4**7)**16 inch** (400 mm) Length ΤĹ (- -<u>0.60</u> (15.2) Shaft Cross Parallel Key (Included) Section A-A' 5557-10R(MOLEX)

Model	Motor Model	Gear Ratio	L1 inch (mm)	L2 inch (mm)	Weight Ib. (kg)	DXF
A\$98AH_	ASM98A - H	50, 100 -	6.44 (163.5)	_	8.6 (3.9)	B218
AS98AP-H						DZIO
AS98MH_		50,100		0 44 (014 5)	9.5 (4.3)	B241
AS98M_P-H_	A3/0/98/01⊓			8.44 (214.5)	5.5 (4.5)	0241

• Enter the gear ratio in the $box(\Box)$ within the model number.

• Enter the power supply voltage A, C or S in the box () within the model number.

Introduction

AS PLUS

ASC

RR

CFKI

CSK

PMC

UMK

CSK

PK/PV

Ŗ

UI2120G EMP401

SC8800 SC8800E SG8030J

SMK Low-Speed ynchronou Motors

Accessories

 $(3.5^{+0.1})$

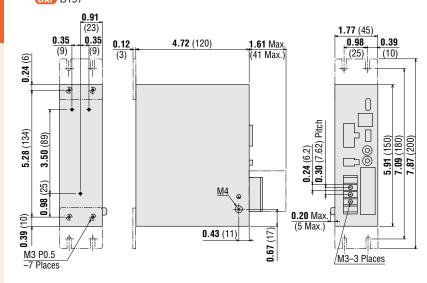
Loop a

Constant S-Phase Microstep 5-Phase Full/Half

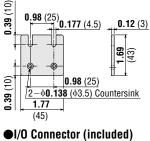
2-Phase Full/Half without with AC Input DC Input Encoder Encoder

2-Phase Stepping Motors

Driver with Indexer


Controllers

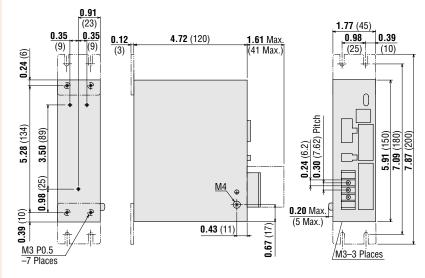
Motor & Driver Packa


Driver

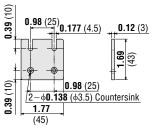
Stepping Motors

Weight: 1.8 lb. (0.8 kg)

Mounting Bracket (2 pieces, included)



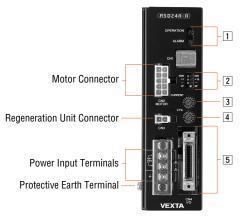
Connector: 54306-3611 (MOLEX) Cover Assembly: 54331-1361 (MOLEX)


14 AS PLUS

Weight: 1.8 lb. (0.8 kg)

DXF B298

Mounting Bracket (2 pieces, included)



●I/O Connector (included)

Connector (36 pin): 54306-3611 (MOLEX) for CN4 Cover Assembly (36 pin): 54331-1361 (MOLEX) for CN4 Connector (24 pin): 54306-2011 (MOLEX) for CN5 Cover Assembly (24 pin): 54331-1201 (MOLEX) for CN5

Introduction

Connection and Operation **AS** Series

1 Signal Monitor Display

•	LED	mai	calor	S

OPERATION Green Power Supply Indication Lights when AC power is on. ALABM Red Alarm Indication Blinks when protection	Indication	Color	Function	When Activated
ALARM Red Alarm Indication Blinks when protection	OPERATION Green Power S		Power Supply Indication	Lights when AC power is on.
ALANNI Reu Alarm mulcation functions are activated.	ALARM	ARM Red Alarm Ind		

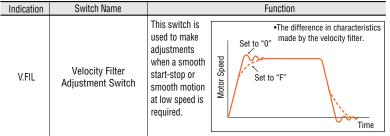
• Alarm

Blink Count	Protection Function	When Activated
1	Overheat	The temperature of the driver's internal heat sink
	Overneat	rises to approximately 185°F (85°C).
2	Overload	The motor is operated continuously over 5 seconds
2	Overioau	under a load exceeding the maximum torque.
3	Overvoltage	The primary voltage of the driver's inverter exceeds
3	Overvollage	the permissible value.
4	Speed error	The motor cannot accurately follow at the indicated pulse velocity.
5	Overcurrent	An excessive current has flowed to the driver's inverter.
6	Overspeed	The motor shaft velocity exceeds 5000 r/min. (Except for Gear Type)
7	EEPROM Data Error	The EEPROM has a fault.
8	Sensor Error	The power source turns it on when the motor cable
0	SEIISUI EIIUI	is not connected to the driver.
No Blink	System Error	The driver has a fatal error.

2 Function Switches

Indication	Switch Name	Function	Connector	P
1000/500 X1/ X10	Resolution Select Switch	This function is for selecting the motor resolution. For each geared type, the resolution of the gears output shaft is 1/gear ratio. "1000" " \times 1" →1000 pulses (0.36°/step) "1000" " \times 10" →10000 pulses (0.036°/step) "500" " \times 1" →500 pulses (0.72°/step) "500" " \times 10" →5000 pulses (0.072°/step)		
1P/2P	Pulse Input Mode Switch	The settings of this switch are compatible with the following two pulse input modes: "1P" for the 1-pulse input mode (step and direction), "2P" for the 2-pulse input mode (CW, CCW).		-

Note:

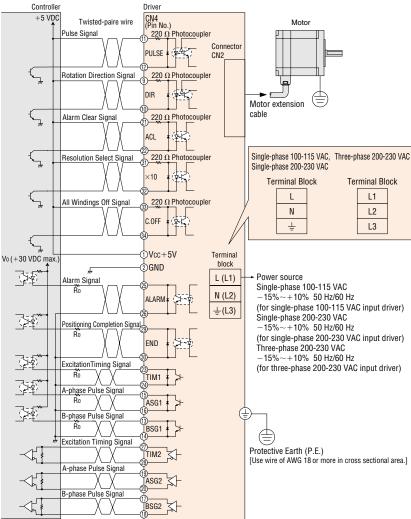

• Always turn the power off before switching resolution or pulse input, and turn it ON again after you have made the change.

If the "Resolution Select" switch is set to " $\times 10$ ", it cannot control the resolution select by input terminal. It is always " $\times 10$ ".

3 Current Adjustment Switch

Indication	Switch Name	Function
CURRENT	Current Adjustment Switch	The motor running current can be lowered to suppress temperature rise in the motor and driver, or lower operating current in order to allow a margin for motor torque.

4 Velocity Filter Adjustment Switch

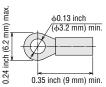

5 Input/Output Signals						
Connector	Pin Number	Input/Output	Signal	Name of Signal		
	1		Vcc+5V*1			
	2	External Power Input	GND	Power supply for control signal		
	3		Vcc+24V*1			
	9		CCW (DRE)	00W D. I (D. I D		
	10	Input Signal	CCW (DRE)	CCW Pulse(Rotation Direction)*2		
	11	input olgilai	CW (PLS)	OW/ Dulas (Dulas)*2		
	12		CW (PLS)	CW Pulse(Pulse)*2		
	13		BSG1	B-Phase Pulse Output		
	14		GND	(Open Collector)		
	15		ASG1	A-Phase Pulse Output		
	16		GND	(Open Collector)		
	17	Output Signal	BSG2	B-Phase Pulse Output		
	18		BSG2	(Line Driver)		
	19		ASG2	A-Phase Pulse Output		
CN4	20		ASG2	(Line Driver)		
	21	Januat Cinnal	ACL	Alarm Clear		
	22	Input Signal	ACL	Alarm Glear		
	23		TIM1	Timing		
	24		GND	(Open Collector)		
	25		ALARM	A1		
	26		ALARM	Alarm		
	27	Output Signal	TIM2	Timing		
	28		TIM2	(Line Driver)		
	29		END	Destification Occurring		
	30	1	END	Positioning Completion		
	31		×10	Resolution Select		
	32	Input Cianal	×10	Resolution Select		
	33	Input Signal	C.OFF	All Windings Off		
	34	1	C.OFF	All Windings Off		

***1** Do not input 5 VDC and 24 VDC at the same time.

2 Value in parentheses represents the setting 1-pulse input mode. The setting at shipment is the 2-pulse input mode. Low-Speed Synchronou Motors

Accessories

Connection Diagrams


Notes:

- Vo and the current must be 30 VDC, 15 mA or less respectively. If the current exceeds 15 mA, connect external resistance Ro.
- Use a multi-core, twisted-pair shielded wire AWG 28 for the control input/output signal line (CN4), and keep wiring as short as possible [within 6.6 feet (2 m)].
- Note that as the length of the pulse signal line increases, the maximum transmission frequency decreases.
- For the wiring between the motor and driver, use the extension cable or movable cable.
- Use a three-core cable for the power supply line with a conductor cross-sectional area of at least AWG 18. (single-phase 100-115 VAC, single-phase 200-230 VAC)
- Use a four-core cable for the power supply line with a conductor cross-sectional area of at least AWG 18. (threephase 200-230 VAC)
- Keep the control input/output signal line at least 1 foot (300 mm) away from power lines (e.g. lines carrying large current, such as AC lines and motor lines). Also, do not run these lines through the same ducts or pipes as power lines.
- The customer must furnish the cables for power supply lines and control input/output signal lines.
- The driver must be properly grounded. The driver's Protective Earth terminal should be grounded to a common ground point, using a cable of AWG 18.
- When the "Timing Signal" or "Pulse Signal" is used, 5 VDC or 24 VDC power supply is necessary. Use either a 5 VDC or a 24 VDC power supply. Do not connect power to pins ① and ③ at the same time. See 5 Input/Output table on page C-39.

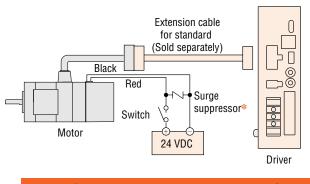
Recommended Crimp Terminals

· Round shape terminals with insulator

• U shape terminals with insulator

* Crimp terminals are not provided with the package. They must be furnished separately.

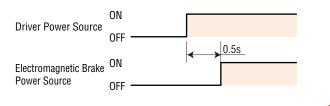
Connecting the Electromagnetic Brake to Power Supply
 Connect the electromagnetic brake to the neuron supply using a cable


Connect the electromagnetic brake to the power supply using a cable with a conductor crosssectional area of at least AWG 24. The power supply input to the electromagnetic brake is 24 VDC ±5% 0.3 A min. (**AS46**: 0.1 A min.) and therefore must be independent of the driver's power supply. **Notes:**

- Applying a voltage that exceeds the specifications will cause the electromagnetic brake to generate a great deal of heat, resulting in
 motor temperature rises and possible damage to the motor. Conversely, if voltage is too low, the electromagnetic brake may not
 release.
- · To protect the switch contacts and prevent noise, always connect the accessory surge suppressor.
- Correct polarity (+ and -) must be ensured when connecting the electromagnetic brake lead wire of AS series to the DC power supply. If polarity is incorrect, the electromagnetic brake will not operate properly.
- When using as a CE certified part, use a DC power supply with reinforced insulation for the primary side as the power supply for the electromagnetic brake. (* The surge suppressor is included with electromagnetic brake motors.)

Connection Method

AS46


The electromagnetic brake wire is linked to the connector on the motor [23.6 inch (600 mm)]. When connecting with the DC power supply, connect the red spiral lead wire to +24 V, and the black lead wire to the ground (GND). Use the extension cable or the movable cable (both sold separately) for standard.

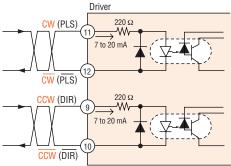
Timing Chart for Electromagnetic Brake Operation

To release the electromagnetic brake, wait at least 0.5 seconds after turning on the driver power source.

The load may fall down due to a loss of holding torque.

AS66, AS69, AS98

The electromagnetic brake wire is linked to the connector on the driver connection side of extension cable for electromagnetic brake models (sold separately). Be sure to use the accessory (sold separately) extension cable or movable cable. Connect the orange/black spiral lead wire [2.36 inch (60 mm)] to +24 V, and the gray lead wire [2.36 inch (60 mm)] to the ground (GND).

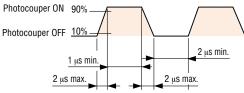

Surge suppressor

24 VDC Switch Surge suppressor Gray Black Black Black Black Black Cold Separately) Motor Driver

Introduction

Description of Input/Output Signals Pulse Input (CW) and Rotation Direction (CCW) Input Signal

Input Circuit and Sample Connection

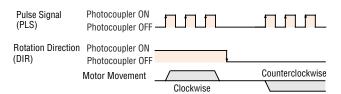

The letters indicate signals under the 2-pulse input mode, while the letters in parentheses indicate signals under the 1-pulse input mode. The factory setting is 2-pulse input mode.

Note:

 When Vo is equal to 5 VDC, external resistance is not necessary. When Vo is above 5 VDC, connect external resistance to keep the input current between 7 mA and 20 mA.

♦ Pulse Waveform Characteristics

(Photocoupler state corresponding to the input pulse)

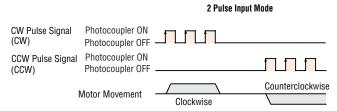

For pulse signals, use input pulse waveforms like those shown in the figure above.

Pulse Input Mode

1-Pulse Input Mode

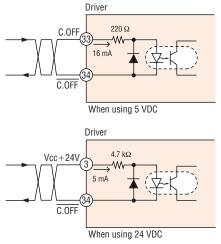
The 1-pulse input mode uses "Pulse" (PLS) and "Rotation Direction" (DIR) signals. CW is selected by inputting DIR signals at low level (with the input photocoupler on), CCW by inputting at high level (with input photocoupler off). "Rotation Direction" signals

Photocoupler "ON": Clockwise, Photocoupler "OFF": Counterclockwise 1 Pulse Input Mode



2-pulse input mode

The 2-pulse input mode is used for "CW" and "CCW" pulses. When "CW" pulses are input, the motor's output shaft rotates clockwise when the motor is viewed facing the shaft; when "CCW" pulses are input, the shaft rotates counterclockwise.

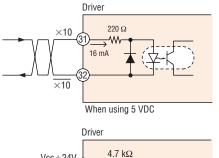

Note:

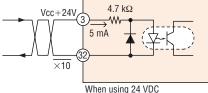
• The factory setting is 2-pulse input.

All Windings Off (C.OFF) Input Signal

Input Circuit and Sample Connection

This controller power source offers a choice of either 5 VDC or 24 VDC.


Inputting the "All Windings Off" (C.OFF) signal puts the motor in a non-excitation (free) state. It is functioning when the photocoupler is ON. It is used when turning the motor shaft externally or when positioning manually. This signal clears the deviation counter.

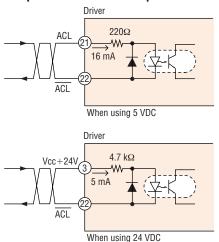


Resolution Select (×10) Input Signal

Input Circuit and Sample Connection

This controller power source offers a choice of either 5 VDC or 24 VDC. During input of this signal, the magnification of the resolution is \times 10. It is only valid when the resolution select switch is set to \times 1.

Note:

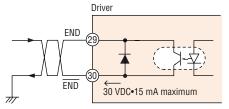

• When the resolution select switch is set to $\times 10$, the "Resolution Select" Input is ignored. In this case, the "Resolution Select" Input is always equal to ON.

Introduction ß DC Input ASC AC Input 5-Phase Microstep RR DC Input CFKI 5-Phase Full/Half CSK DC Input PMC 2-Phase Full/Half AC Input DC Input UMK CSK without Encoder 2-Phase Stepping Motors PK/PV Encode Ŗ with **UI2120G** Driver with Indexer EMP401 Controllers SC8800 SC8800E SG8030J

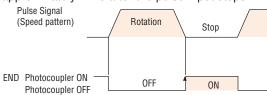
SMK

Accessorie

Alarm Clear (ACL) Input Signal Input Circuit and Sample Connection

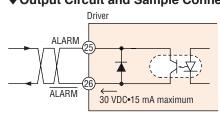


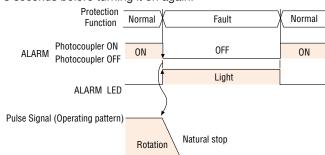
This controller power source offers a choice of either 5 VDC or 24 VDC. This signal is used when a protection circuit has been activated, for canceling the alarm without turning off power to the driver.


Note:

- The following alarm cannot be released. To cancel the alarm, first resolve the cause and check for safety, and then turn power on again.
 - Over Current
 •EEPROM Data Error
 •System Error

Position Completion (END) Output Signal Output Circuit and Sample Connection

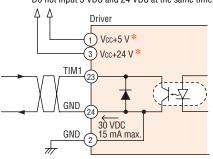

Circuits for use with 30 VDC, 15 mA maximum. This signal is output at the photocoupler ON state when positioning is completed. This signal is output when the rotor position is less than $\pm 1.8^{\circ}$ from the command position, approximately 2 ms after the pulse input stops.


Note:

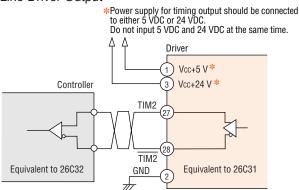
 The END signal flashes during operation with a pulse input frequency of 500 Hz or less.

Alarm (ALARM) Output Signal ♦ Output Circuit and Sample Connection

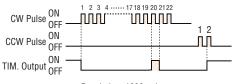
Circuits for use with 30 VDC, 15 mA maximum. This signal indicates that one of the driver's protection circuits has been activated. When an abnormality such as an overload or over current is detected, the alarm signal is output, the ALARM indicator lights, and the motor stops (non-excitation state). To cancel the alarm, first resolve the cause and check for safety, and then input an Alarm-clear (ACL) signal or cycle power. Once power has been turned off, wait at least 3 seconds before turning it on again.



Note:


The alarm output uses positive logic (Normally Closed), all other outputs use negative logic (Normally Open).

Excitation Timing (TIM.) Output Signal • Output Circuit and Sample Connection

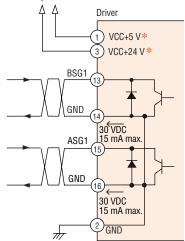

Open Collector Output (Current Source Type) *Power supply for timing output should be connected to either 5 VDC or 24 VDC. Do not input 5 VDC and 24 VDC at the same time.

Circuits for use with 30 V, 15 mA maximum. Line Driver Output

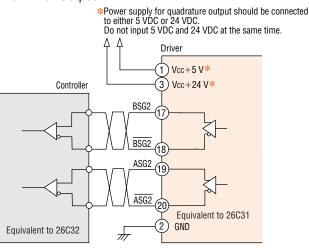
When the "Excitation Timing" signal is output, the photocoupler turns ON (For the line driver output which is TIM2, the output signal is High). This signal can be used to detect the home position with greater precision. This signal is output 50 times per motor shaft revolution.

Resolution: 1000 pulses

Notes:


- •A precise timing signal cannot be obtained when the speed of the pulse input frequency is over 500 Hz.
- •When the Timing Signal Output is used, 5 VDC or 24 VDC power supply is necessary.

Quadrature (ASG1/BSG1, ASG2/BSG2) Output Signal


♦ Output Circuit and Sample Connection

Open Collector Output (Current Source Type) *Power supply for quadrature output should be connected

to either 5 VDC or 24 VDC. Do not input 5 VDC and 24 VDC at the same time.

Circuits for use with 30 V, 15 mA maximum. Line Driver Output

These signals are used when monitoring the motor position. The pulse resolution is the same as the motor resolution at the time of power-on.

[Example: Resolution select switch (1000 P/R) \rightarrow Output pulse number for each motor revolution (1000).] The phase difference between A and B is 90° electrical.

Notes:

- The pulse output accuracy is, regardless of resolution, within ±0.36° (repetition accuracy: within 0.09°)
- When the "quadrature" signal output is used, 5 VDC or 24 VDC power supply is necessary. These signals are only for position verification when the motor is stopped. There is a 1 ms (max.) time lag between real rotor motion and the output signals.

Pulse Waveform Characteristics

ASG1 (ASG2)	Photocoupler ON Photocoupler OFF
BSG1	Photocoupler ON
(BSG2)	Photocoupler OFF
	(Clockwise rotation of motor)

Introduction

PS

AS PLUS

ASC

RR

CFKI

CSK

PMC

UMK

CSK

PK/PV

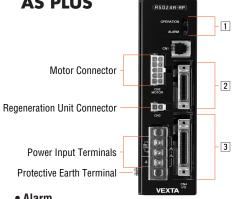
PK

UI2120G EMP401 SC8800 SG8030J SMK

Accessories

a Stepping Motor fore Usin

Cinput AC Input DC Input DC Input AC Input DC Input DC Input Motor & Driver Packae


2-Phase Full/Half without with AC Input DC Input Encoder Encoder

Driver with Indexer

Controllers

Low-Speed Synchronous Motors

Connection and Operation **AS PLUS**

1 Signal Monitor Display

LED Indications

Indication Color		Function	When Activated			
OPERATION	Green	Power supply indication	Lights when AC power is on			
ALARM	Red	Alarm indication	Blinks when protective functions are activated			

Alarm				0	_ _ .
Blink Count	Protective Function	When Activated	Alarm Code Output 90h	Operation	Reset
	Stack overflow	Too many nested LOOP, ENDL, CALL, etc.	90n (Decimal: 144) 91h	_	
	Memory read error	The data stored in the memory is damaged.	(Decimal: 145)		
	Program reference error	The called program does not exist.	94h (Decimal: 148)		
	Compilation error The executed program is not executable.		95h (Decimal: 149)	The program stops.	*
1	Operation result overflow	The operation result exceeds the range of -8,388,608 to +8,388,607.	98h (Decimal: 152)	The motor performs stop operation set	Possible
	Parameter out-of-range error	The parameter exceeds its setting range.	99h (Decimal: 153)	by MSTOPACT.	
	Divide by zero	Divide by zero was executed.	9Ah (Decimal: 154)		
	A PC command execution error A PC command was executed while the		9Ch (Decimal: 156)		
			9Dh (Decimal: 157)		
	Overheat protection	The temperature of the heat sink in the driver has reached approx. 185°F (85°C).	21h (Decimal: 33)		
2	Overload protection	A load exceeding the maximum torque was applied to the motor for the duration set by the OLTIME command.	30h (Decimal: 48)	The motor loses it's holding torque.	* Possible
	Overspeed error The speed of the motor's output shaft has exceeded 5,000 r/min.		31h (Decimal: 49)		
3	Overvoltage protection	The driver's primary inverter voltage has exceeded the limit of tolerance.	22h (Decimal: 34)	The motor loses it's holding torque.	* Possible
4	Excessive position deviation	The position of the motor's output shaft has deviated from the position specified by the operation command, by at least the number of revolutions set by the OVERFLOW command.	10h (Decimal: 16)	The motor loses it's holding torque.	* Possible
5	Overcurrent protection	An excessive current has flowed into the power element of the driver's inverter section.	20h (Decimal: 32)	The motor loses it's holding torque.	* Impossibl
6	Emergency stop			The program stops. The motor loses it's holding torque (ESTOPACT = 0).	∗ Possible
	Incorrect limit-sensor logic	Both the +LS and -LS are ON simultaneously.	60h (Decimal: 96)		
	Reverse limit-sensor connection	The +LS and -LS are connected in reverse.	61h (Decimal: 97)	The motor stops immediately.	
	Mechanical home seeking error	Mechanical home seeking could not be executed correctly.	62h (Decimal: 98)		
7	Overtravel	The motor has exceeded its hardware limit. (Decimal: 102) immed		The program stops. The motor stops immediately (ESTOPACT= 1).	* Possible
	Software overtravel	The motor has exceeded its software limit.	67h (Decimal: 103)	Decelerates to a stop.	
	Emergency stop	An E-STOP signal has been input.	68h (Decimal: 104)	The motor stops immediately.	
	Invalid operation data	An inoperable operation pattern has been started.	70h (Decimal: 112)	Motion is stopped.	
	Resolver sensor error	The motor cable has not been connected or a motor's error has occurred in a sensor.	42h (Decimal: 66)	The motor loses it's	*
8	Initial rotor revolution error	The driver's power was turned on while the		holding torque.	Impossible
9	NVRAM error	Motor control parameters has been damaged.	41h (Decimal: 65)	The motor loses it's holding torque.	* Impossibl
Stays ON.	System error	Driver failure has occurred.	F0h (Decimal: 240)	The motor loses it's holding torque.	* Impossibl

* Possible - The Alarm can be cleared with the ALMCLR command or an ACL input. Impossible - The AC power must be cycled to clear these alarms.

2 Limit Sensor Input Communication Signals (CN5)

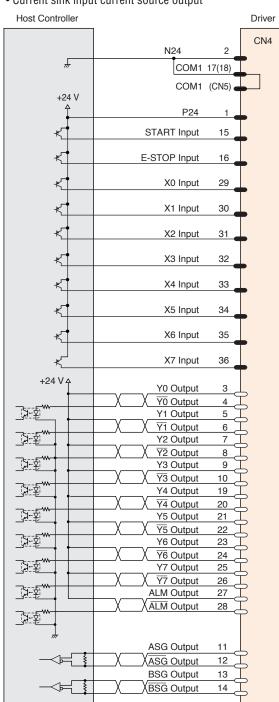
Connector	Pin No.	Input/Output	Signal	Signal Name
	1		COM1	Power source for input signals
	2	Input	COM2	Power source for input signals
	3	-	-	No Connection
	4	-	-	No Connection
	5	Output	TX	RS-232C Transmit
	6	-	-	No Connection
	7	Input	RX	RS-232C Receive
	8	-	-	No Connection
	9	-	-	No Connection
CN5	10	Input	N24	External power supply terminal (GND)
CNS	11		COM1	Power source for input signals
	12		COM2	Power source for input signals
	13		+LS	+LS limit sensor
	14		-LS	-LS limit sensor
	15	المسال	HOMELS	HOME sensor
	16	Input	SENSOR	Sensor
	17		-	No connection
	18		-	No connection
	19		COM1	Power source for input signals
	20		COM2	Power source for input signals

3 I/O Signals (CN4)

Connector	Pin No.	Input/Output	Signal	Signal Name
	1	Input	P24	Power source for RS-232C, ASG and BSG (24 VDC)
	2	Input	N24	Power source for RS-232C, ASG and BSG (GND)
	3	-	Y0	
	4		YO	
	5		Y1	
	6		T1	General output*1
	7		Y2	(Y0 to Y3)
	8	Outrout	Y2	
	9	Output	Y3	
	10		Y3	
	11		ASG	Phase A pulse output
	12		ASG	(Line-driver output)
	13		BSG	Phase B pulse output
	14		BSG	(Line-driver output)
	15		START	START
	16	Input	E-STOP	Emergency stop
	17		COM1	Power source for input signal
CN4	18			
0114	19	Output	Y4	
	20		<u>¥4</u>	
	21		Y5	
	22		<u>Y5</u>	General output*1
	23		Y6	(Y4 to Y7)
	24		Y6	
	25		Y7	
	26		<u>77</u>	
	27		ALM	Alarm
	28		ALM	Addin
	29		X0	
	30		X1	
	31		X2	_
	32		X3	_General input ^{*2}
	33	Input	X4	(X0 to X7)
	34		X5	
	35		X6	_
	36		X7	

*1: The following signals can be assigned arbitrarily via program settings. Additionally, the output logic of each signal can be switched. END output, RUN output, MOVE output, HOME-P output, TIM output, MBC output
 *2: The following signals can be assigned arbitrarily via program settings. Additionally, the input logic of each signal can be switched. ACL input, PAUSE input, MSTOP input, RESTART input

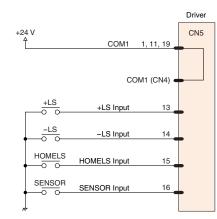
Stepping Motors

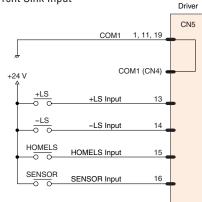

a Stepping Motor efore Usir

Connection Diagrams **AS PLUS**

Power Lines and I/O Signals (CN4)

· Current source input and current sink output


Host Controller		Driver
+24 V		CN4
<u> </u>	P24 1	
	COM1 17(18)	
	COM1 (CN5)	
		Γ
"	N24 2	-
	START Input 15	
1 ///	E-STOP Input 16	
<u></u>	X0 Input 29	
¥	X1 Input 30	
	X2 Input 31	
۲ "	X3 Input 32	
۲ "	X4 Input 33	
۲ <i>"</i>	X5 Input 34	
۲ "		
	X6 Input 35	-
	X7 Input 36	-
+∠4 V A		
	Y0 Output 3	
	1000000000000000000000000000000000000	P
<u></u>	Y1 Output 5	2
	χ χ $\overline{Y1}$ Output 6	2
	Y2 Output 7	P
	X X Y2 Output 8	P
	Y3 Output 9	Ľ
	X X Y3 Output 10	Г
	Y4 Output 19	Г
	X X Y4 Output 20	Ц
	Y5 Output 21	Д
	X X Y5 Output 22	Д
	Y6 Output 23	Д
	X X Y6 Output 24	Д
	Y7 Output 25	Б
	X X Y7 Output 26	Д
	ALM Output 27	Д
	X XALM Output 28	5
,		Γ
	ASG Output 11	5
	X XASG Output 12	2
	BSG Output 13	Ļ
	X XBSG Output 14	5


· Current sink input current source output

Power Lines and Limit Sensors (CN5)

Current Source Input

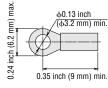
· Current Sink Input

Wiring the signal cable

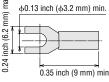
- Use input signals at 24 VDC±10%.
- Use output signals at 30 VDC or below and at 4 to 8 mA.
- Use a shielded cable with a wire of a size ranging between AWG 24 and AWG 22 for the driver signal cable (I/O signals, limit sensors signals), and keep it as short as possible.
- Keep the control input/output signal line at least 1 foot (300 mm) away from power lines (e.g. lines carrying large current, such as AC lines and motor lines). Also, do not run these lines through the same ducts or pipes as power lines.

Other wiring

- For the wiring between the motor and driver, use the extension cable or movable extension cable.
- . Use a three-core cable for the power supply line with a conductor crosssectional area of at least AWG 18.
- The customer must furnish the cables for power supply lines and control input/output signal lines.
- The driver must be properly grounded. The driver's Protective Earth terminal should be grounded to a common ground point, using a cable of AWG 18.

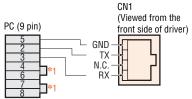

max

(mm


0.24

Recommended Crimp Terminals

Round shape terminals with insulator


U shape terminals with insulator

* Crimp terminals are not provided with the package. They must be furnished separately.

Connecting the Driver with a Personal Computer (CN1)

• Pin Assignments and Connecting

*1 Short pins 4 and 6 together, as well as pins 7 and 8 together.

Communication Specifications

Item	Description
Electrical characteristics	In conformance with RS-232C.
Transmission method	Start-stop asynchronous method, NRZ
Transmission method	(non-return to Zero), full-duplex
Data length	8 bits, 1 stop bit, no parity
Transmission speed	9,600 bps
Protocol	TTY (CR+LF)
Connector specification	Modular (4 lines, 4 pins)

Notes:

- . Confirm that 24 VDC is supplied to the driver's external power supply input terminals (P24 and N24).
- . Use the RS-232C signal lines over the shortest possible distance. It is recommended that the signal lines be shielded to protect them from noise interference.
- The maximum distance between drivers when using a daisy chain connection should be 49.2 feet (15 m).

Stepping Motors

Connecting the Electromagnetic Brake to Power Supply

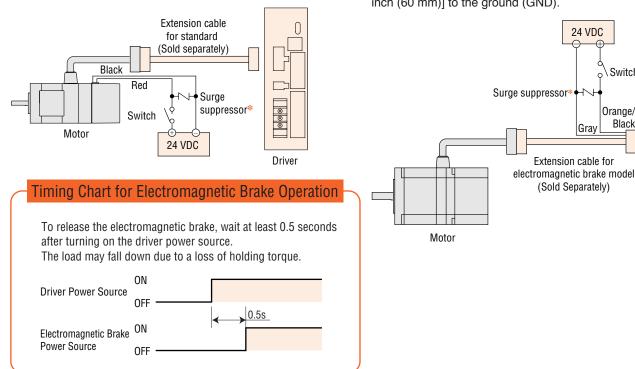
Connect the electromagnetic brake to the power supply using a cable with a conductor crosssectional area of at least AWG 24. The power supply input to the electromagnetic brake is 24 VDC \pm 5% 0.3 A min. (**AS46**: 0.1 A min.) and therefore must be independent of the driver's power supply.

Notes:

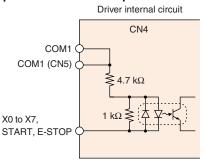
- Surge suppressor · Applying a voltage that exceeds the specifications will cause the electromagnetic brake to generate a great deal of heat, resulting in motor temperature rises and possible damage to the motor. Conversely, if voltage is too low, the electromagnetic brake may not release.
- · To protect the switch contacts and prevent noise, always connect the accessory surge suppressor.
- Correct polarity (+ and -) must be ensured when connecting the electromagnetic brake lead wire of AS series to the DC power supply. If polarity is incorrect, the electromagnetic brake will not operate properly.
- . When using as a CE certified part, use a DC power supply with reinforced insulation for the primary side as the power supply for the electromagnetic brake. (* The surge suppressor is included with electromagnetic brake motors.)

Connection Method AS46

The electromagnetic brake wire is linked to the connector on the motor [23.6 inch (600 mm)]. When connecting with DC power supply, connect the red spiral lead wire to +24 V, and the black lead wire to the ground (GND). Use the extension cable or the movable cable (both sold separately) for standard type.



The electromagnetic brake wire is linked to the connector on the driver connection side of extension cable for electromagnetic brake model (sold separately). Be sure to use the accessory (sold separately) extension cable or movable cable. Connect the orange/black spiral lead wire [2.36 inch (60 mm)] to +24 V, and the gray lead wire [2.36 inch (2.36 mm)]inch (60 mm)] to the ground (GND).


Switch

Black

Driver

Description of Input Signals (CN4) Input Circuit and Sample Connection

Note:

• Use input signals at 24 VDC \pm 10%.

• P24 input, N24 input

These inputs are for the external power supply required for the RS-232C communication, ASG and BSG outputs. Make sure to use a power supply of at least 24 VDC \pm 10%, 0.05A.

If the same power supply is going to be used for the RS-232C, ASG, BSG and other external I/O, make sure to use a power supply of at least 24 VDC \pm 10%, 0.2A.

• START input

This signal starts the program named "STARTUP". OFF \rightarrow ON edge to start "STARTUP" program.

• E-STOP input

This signal is used to forcibly stop the operation. Set the stopping method using the ESTOPACT command. Additionally, the input logic can be changed using the ESTOPLV command. (The factory setting of this command is normally open.)

 $OFF \rightarrow ON$ edge to stop operation

• COM1 input

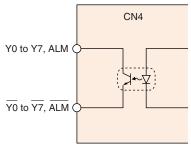
This is an external power-source terminal for input signals. This signal is internally connected to terminals COM1 of CN5.

• X0 to X7 inputs

The X0 thorough X7 inputs can be used as input ports for general signals. The status of each port can be read using an IN command or INx command.

The general signals assignable to the X0 through X7 inputs are listed below. Use a corresponding command to assign signal.

ACL inputINACL command PAUSE input.....INPAUSE command MSTOP input.....INMSTOP command RESTART input.....INRESTART command


• ACL input

This signal is used to reset the alarm that has been generated by the driver's protective function.

Input an ACL signal once after removing the cause that has triggered the protective function.

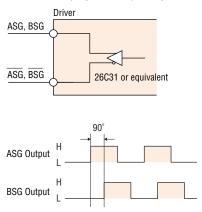
Description of Output Signals (CN4) Output Circuit and Sample Connection

Driver internal circuit

Note:

• Use output signals at 30 VDC or below and at 4 to 8 mA.

• YO to Y7 output


The Y0 through Y7 outputs can be used as output ports for general signals. The status of each port can be read using an OUT command or OUTx command.

The general signals assignable to the Y0 through Y7 outputs are listed below. Use the corresponding command to assign each signal.

END output	OUTEND command
RUN output	OUTRUN command
MOVE output	OUTMOVE command
HOME-P output	OUTHOMEP command
TIM output	OUTTIM command
MBC output	OUTMBC command

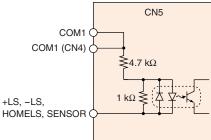
ASG, BSG Output

• Line driver output (26C31 or equivalent)

• ASG Output, BSG Output

To monitor the motor position, connect these signals to a counter, etc. The pulse resolution is the same as the motor resolution at the time of power-on. The ASG output and BSG output have a phase difference of 90 degrees electrical. Pulse output is subject to a maximum delay of 1 ms relative to the motor's motion. Use the ASG output and BSG output to check the stopping position.

ALM Output


This signal is output when an alarm is generated by the driver's protective function. The reason for triggering of the protective function can be identified through the blink count of the alarm LED, or ALM command.

To reset the ALM output, remove the cause of the alarm and then perform one of the following procedures after ensuring safety:

- Assign INACL then turn the ACL input to ON.
- Enter an ALMCLR command.
- Turn off the AC power, wait at least 10 seconds, then turn it back on.

Description of Limit Sensors (CN5) Input Circuit and Sample Connection

Driver internal circuit

• Use input signals at 24 VDC±10%.

Note:

COM1 input

This is a power-source input terminal for limit-sensor signals. The power-source voltage must be 24 VDC \pm 10%. This signal is internally connected to terminals COM1 of CN4.

COM2 input

This is a power-source input terminal for limit-sensor signals.

Use it when sharing the input signal power source among two or more drivers.

• +LS input, -LS input

These signals are input from +LS and -LS.

The input logic can be changed using the OTLV command. (The factory setting of this command is normally open.) Input logic for the +LS input and -LS input cannot be set separately.

Continuous Operation and Positioning Operation

When a +LS or -LS is detected, the driver's protective function (over travel) is activated. As a result,

the ALM output is turned OFF and the motor stops.

Set the stopping method using the OTACT command.

To pull out of +LS or -LS, cancel the protective function by inputting an ACL signal once or by using the ALMCLR command. Then perform mechanical home seeking routine or operate the motor in the direction opposite that of the limit sensor during continuous operation.

Mechanical Home Seeking Routine

When a +LS or -LS is detected, the motor operates in the direction opposite that of the detected limit.

• HOMELS input

This signal is input from HOMELS.

Connect the HOMELS when mechanical home seeking is performed in 3-sensor mode.

When mechanical home seeking is performed in 3-sensor mode, the HOMELS becomes the mechanical home. The input logic can be changed using the HOMELV command. (The factory setting of this command is normally open.)

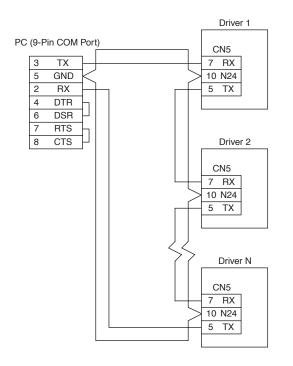
• SENSOR input

This signal is input from SENSOR.

The input logic can be changed using the SENSORLV command. (The factory setting of this command is normally open.)

Mechanical Home Seeking Routine

This input is used when detecting the mechanical home at a specific point on the motor's output shaft or load shaft using a slotted disc, etc. The accuracy of mechanical home hunting increases if this input is used in conjunction with the TIM signal.


Continuous Operation

The motor can be stopped forcibly upon the detection of SENSOR.

Set the stopping method using the SENSORACT command.

Note:

• If the SENSOR input is used in mechanical home hunting, it cannot be used during continuous operation.

Description of Daisy-chain Connections

Use the RS-232C communication pins (TX, RX and N24) of the sensor connector (CN5) when connecting two or more drivers via a daisy chain (up to 36 drivers).

• TX, RX

These communication terminals are used when implementing daisychain connections.

Notes:

- Confirm that each driver is supplied 24 VDC $\pm 10\%$ (P24 and N24) of CN4 from outside for communication.
- Wire the RS-232C signal lines over the shortest possible distance. It is recommended that the signal lines be shielded to protect them from noise interference.
- \bullet The maximum distance between drivers when using a daisy chain connection should be 49.2 feet (15 m).
- Do not use the RS-232C communication port (CN1).

Stepping Motors

Introduction

AS PLUS

ASC

RR

CFKI

CSK

PMC

UMK

CSK

PK/PV

PK

UI2120G EMP401 SC8800E SG8030J SMK

Accessories

a Stepping Motor efore Usin

with Indexer

Controllers

Low-Speed Synchronous Motors

 Motor & Driver Packages
 2-Phase Stepping Motors

 Xorpe
 5-Phase Microstep
 5-Phase Full/Half
 2-Phase Full/Half
 without
 with

 DC Input
 AC Input
 DC Input
 AC Input
 DC Input
 Concoder
 Encoder

ASD24C-AP

ASD30B-AP

-		AS		AS PLUS			
Туре	Package Model	Motor Model	Driver Model	Package Model	Motor Model	Driver Mode	
	AS46 A	ASM46_A	ASD13A-A	AS46 AP	ASM46_A	ASD13A-AI	
	AS66 A	ASM66_A	ASD24A-A	AS66 AP	ASM66_A	ASD24A-A	
Standard	AS69 A	ASM69_A	ASD30D-A	AS69 AP	ASM69_A	ASD30D-A	
	AS98_A	ASM98_A	ASD30A-A	AS98 AP	ASM98_A	ASD30A-A	
	AS911AA	ASM911AA	ASD30E-A	AS911AAP	ASM911AA	ASD30E-AI	
AS46_A-T3.6	AS46_A-T3.6	ASM46_A-T3.6		AS46 AP-T3.6	ASM46_A-T3.6		
	AS46_A-T7.2	ASM46_A-T7.2	ASD13B-A	AS46 AP-T7.2	ASM46_A-T7.2	ASD13B-A	
	AS46_A-T10	ASM46_A-T10		AS46 AP-T10	ASM46_A-T10		
	AS46_A-T20	ASM46 A-T20	ASD13C-A	AS46 AP-T20	ASM46_A-T20		
	AS46_A-T30	ASM46 A-T30	ASDISC-A	AS46 AP-T30	ASM46 A-T30	ASD13C-AP	
	AS66 A-T3.6	ASM66 A-T3.6		AS66 AP-T3.6	ASM66 A-T3.6		
	AS66 A-T7.2	ASM66_A-T7.2	ASD24B-A	AS66 AP-T7.2	ASM66 A-T7.2	ASD24B-AP	
	AS66 A-T10	ASM66 A-T10		AS66 AP-T10	ASM66 A-T10		
	AS66 A-T20	ASM66 A-T20	ASD24C-A	AS66 AP-T20	ASM66 A-T20	ASD24C-A	
-	AS66 A-T30	ASM66 A-T30	AJDZ4C-A	AS66 AP-T30	ASM66 A-T30	AJD24C-Ar	
	AS98_A-T3.6	ASM98_A-T3.6	ASD30A-A	AS98 AP-T3.6	ASM98_A-T3.6	ASD30A-AP	
	AS98_A-T7.2	ASM98_A-T7.2		AS98 AP-T7.2	ASM98_A-T7.2		
	AS98 A-T10	ASM98 A-T10		AS98 AP-T10	ASM98 A-T10		
	AS98_A-T20	ASM98 A-T20	ASD30C-A	AS98 AP-T20	ASM98 A-T20	ASD30C-A	
	AS98_A-T30	ASM98 A-T30	ASDSUC-A	AS98 AP-T30	ASM98 A-T30	ASDSUC-A	
	AS46_A-N7.2	ASM46_A-N7.2	ASD13A-A	AS46 AP-N7.2	ASM46_A-N7.2	ASD13A-A	
	AS46 A-N10	ASM46_A-N10	AJDIJA-A	AS46 AP-N10	ASM46_A-N10	AJDI JA-A	
	AS66_A-N5	ASM66_A-N5		AS66 AP-N5	ASM66_A-N5		
	AS66 A-N7.2	ASM66_A-N7.2	ASD24A-A	AS66 AP-N7.2	ASM66_A-N7.2	ASD24A-A	
	AS66 A-N10	ASM66□A-N10		AS66 AP-N10	ASM66_A-N10		
	AS66 A-N25	ASM66_A-N25	ASD24B-A	AS66 AP-N25	ASM66 A-N25	ASD24B-A	
	AS66 A-N36	ASM66_A-N36	ASD24C-A	AS66 AP-N36	ASM66⊡A-N36	ASD24C-A	
PN Geared	AS66 A-N50	ASM66□A-N50	AJDZ4C-A	AS66 AP-N50	ASM66 A-N50	AJD24C-A	
	AS98_A-N5	ASM98_A-N5		AS98 AP-N5	ASM98_A-N5		
	AS98_A-N7.2	ASM98_A-N7.2		AS98 AP-N7.2	ASM98_A-N7.2		
	AS98 A-N10	ASM98_A-N10	ASD30A-A	AS98 AP-N10	ASM98_A-N10	ASD30A-A	
-	AS98_A-N25	ASM98_A-N25		AS98 AP-N25	ASM98 A-N25		
	AS98_A-N36	ASM98_A-N36		AS98 AP-N36	ASM98_A-N36		
	AS98_A-N50	ASM98_A-N50	ASD30B-A	AS98_AP-N50	ASM98_A-N50	ASD30B-A	
	AS46 A2-H50	ASM46_A2-H50	ASD13A-A	AS46_AP2-H50	ASM46 A2-H50	ASD13A-A	
	AS46 A2-H100	ASM46_A2-H100	AJUI JA-A	AS46 AP2-H100	ASM46_A2-H100	AJUI JA-A	
Coored	AS66 A2-H50	ASM66 A2-H50	ASD24B-A	AS66 AP2-H50	ASM66 A2-H50	ASD24B-A	
HG Geared	AS66 A2-H100	ASM66 A2-H100	ASD24C-A	AS66 AP2-H100	ASM66 A2-H100	ASD24C-A	

• Enter A (Standard) or M (electromagnetic brake) in the box (
) within the model numbers.

ASM66 A2-H100

ASM98
A-H50

ASM98
A-H100

Single-Phase 200-230 VAC

AS66 A2-H100

AS98_A-H50

AS98 A-H100

Tupo		AS			AS PLUS		
Туре	Package Model	Motor Model	Driver Model	Package Model	Motor Model	Driver Model	
	AS66 C	ASM66□C	ASD12A-C	AS66 CP	ASM66□C	ASD12A-CP	
Standard	AS69 C	ASM69_C	ASD16D-C	AS69_CP	ASM69_C	ASD16D-CP	
Stanuaru	AS98_C	ASM98_C	ASD16A-C	AS98_CP	ASM98 C	ASD16A-CP	
	AS911AC	ASM911AC	ASD20A-C	AS911ACP	ASM911AC	ASD20A-CP	

ASD24C-A

ASD30B-A

AS66 AP2-H100

AS98 AP-H50

AS98 AP-H100

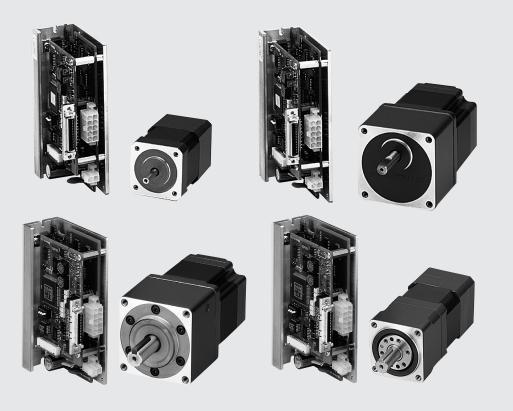
ASM66 A2-H100

ASM98 A-H50

ASM98 A-H100

• Enter A (Standard) or M (electromagnetic brake) in the box (
) within the model numbers.

Single-Phase 200-230 VAC


Туре		AS			AS PLUS		
туре	Package Model	Motor Model	Driver Model	Package Model	Motor Model	Driver Model	
	AS66_C-T3.6	ASM66C-T3.6		AS66 CP-T3.6	ASM66C-T3.6		
	AS66 C-T7.2	ASM66 C-T7.2	ASD12B-C	AS66 CP-T7.2	ASM66C-T7.2	ASD12B-CP	
	AS66 C-T10	ASM66C-T10		AS66 CP-T10	ASM66C-T10		
	AS66 C-T20	ASM66C-T20		AS66 CP-T20	ASM66 C-T20		
TH Geared	AS66 C-T30	ASM66C-T30	ASD12C-C	AS66 CP-T30	ASM66C-T30	ASD12C-CP	
	AS98_C-T3.6	ASM98_C-T3.6		AS98 CP-T3.6	ASM98_C-T3.6		
	AS98_C-T7.2	ASM98_C-T7.2	ASD16A-C	AS98 CP-T7.2	ASM98_C-T7.2	ASD16A-CP	
	AS98_C-T10	ASM98C-T10		AS98 CP-T10	ASM98C-T10		
	AS98_C-T20	ASM98C-T20	ASD16C-C	AS98 CP-T20	ASM98C-T20		
	AS98_C-T30	ASM98C-T30		AS98 CP-T30	ASM98C-T30	ASD16C-CP	
	AS66 C-N5	ASM66 C-N5	ASD12A-C	AS66 CP-N5	ASM66 C-N5		
	AS66_C-N7.2	ASM66 C-N7.2		AS66 CP-N7.2	ASM66C-N7.2	ASD12A-CP	
	AS66_C-N10	ASM66 C-N10		AS66 CP-N10	ASM66 C-N10		
	AS66_C-N25	ASM66 C-N25	ASD12B-C	AS66 CP-N25	ASM66 C-N25	ASD12B-CP	
	AS66_C-N36	ASM66 C-N36	ASD12C-C	AS66 CP-N36	ASM66 C-N36	ASD12C-CP	
DNI Coored	AS66 C-N50	ASM66 C-N50	ASDIZC-C	AS66 CP-N50	ASM66 C-N50	ASD12C-CP	
PN Geared	AS98 C-N5	ASM98 C-N5		AS98 CP-N5	ASM98 C-N5		
	AS98_C-N7.2	ASM98_C-N7.2		AS98 CP-N7.2	ASM98_C-N7.2		
	AS98_C-N10	ASM98_C-N10	ASD16A-C	AS98 CP-N10	ASM98 C-N10	ASD16A-CP	
	AS98_C-N25	ASM98 C-N25		AS98 CP-N25	ASM98 C-N25		
	AS98_C-N36	ASM98C-N36		AS98_CP-N36	ASM98 C-N36		
	AS98_C-N50	ASM98 C-N50	ASD16B-C	AS98_CP-N50	ASM98 C-N50	ASD16B-CP	
	AS66 C2-H50	ASM66 C2-H50	ASD12B-C	AS66 CP2-H50	ASM66 C2-H50	ASD12B-CP	
	AS66 C2-H100	ASM66 C2-H100	ASD12C-C	AS66 CP2-H100	ASM66 C2-H100	ASD12C-CP	
HG Geared	AS98_C-H50	ASM98C-H50		AS98 CP-H50	ASM98 C-H50		
	AS98 C-H100	ASM98 C-H100	ASD16B-C	AS98 CP-H100	ASM98 C-H100	ASD16B-CP	

• Enter **A** (Standard) or **M** (electromagnetic brake) in the box (
) within the model numbers.

Three-Phase 200-230 VAC

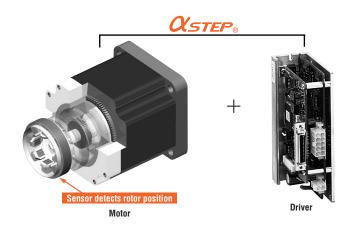
Tuno		AS		AS PLUS			
Туре	Package Model	Motor Model	Driver Model	Package Model	Motor Model	Driver Model	
	AS66 S	ASM66 C	ASD12A-S	AS66 SP	ASM66 C	ASD12A-SP	
Oto and a sed	AS69_S	ASM69□C	ASD16D-S	AS69 SP	ASM69□C	ASD16D-SP	
Standard	AS98_S	ASM98□C	ASD16A-S	AS98_SP	ASM98□C	ASD16A-SP	
4	AS911AS	ASM911AC	ASD20A-S	AS911ASP	ASM911AC	ASD20A-SP	
	AS66_S-T3.6	ASM66 C-T3.6		AS66 SP-T3.6	ASM66C-T3.6		
	AS66_S-T7.2	ASM66 C-T7.2	ASD12B-S	AS66 SP-T7.2	ASM66C-T7.2	ASD12B-SP	
	AS66 S-T10	ASM66 C-T10		AS66 SP-T10	ASM66C-T10		
	AS66_S-T20	ASM66 C-T20	ASD12C-S	AS66 SP-T20	ASM66C-T20	ASD12C-SP	
H Geared	AS66_S-T30	ASM66 C-T30	ASD12C-S	AS66 SP-T30	ASM66C-T30	ASD12C-SP	
	AS98_S-T3.6	ASM98 C-T3.6	ASD16A-S	AS98_SP-T3.6	ASM98C-T3.6		
	AS98_S-T7.2	ASM98 C-T7.2		AS98 SP-T7.2	ASM98 C-T7.2	ASD16A-SP	
	AS98_S-T10	ASM98 C-T10		AS98 SP-T10	ASM98C-T10		
	AS98_S-T20	ASM98 C-T20	ASD16C-S	AS98_SP-T20	ASM98C-T20	ASD16C-SP	
	AS98_S-T30	ASM98 C-T30	ASDIOC-S	AS98_SP-T30	ASM98C-T30	ASD10C-SP	
	AS66_S-N5	S-N5 ASM66_C-N5		AS66 SP-N5	ASM66 C-N5		
	AS66_S-N7.2	ASM66 C-N7.2	ASD12A-S	AS66 SP-N7.2	ASM66 C-N7.2	ASD12A-SP	
	AS66 S-N10	ASM66 C-N10		AS66 SP-N10	ASM66CC-N10		
	AS66_S-N25	ASM66 C-N25	ASD12B-S	AS66 SP-N25	ASM66CC-N25	ASD12B-SP	
	AS66_S-N36	ASM66 C-N36	ASD12C-S	AS66 SP-N36	ASM66CC-N36	ASD12C-SP	
N Geared	AS66_S-N50	ASM66□C-N50	AJD12C-J	AS66 SP-N50	ASM66CC-N50	AJD12C-JP	
'N Geareu	AS98_S-N5	ASM98 C-N5		AS98 SP-N5	ASM98C-N5		
	AS98_S-N7.2	ASM98 C-N7.2		AS98 SP-N7.2	ASM98 C-N7.2		
	AS98_S-N10	ASM98 C-N10	ASD16A-S	AS98 SP-N10	ASM98C-N10	ASD16A-SP	
	AS98_S-N25	ASM98 C-N25		AS98 SP-N25	ASM98C-N25		
	AS98_S-N36	ASM98 C-N36		AS98_SP-N36	ASM98C-N36		
	AS98_S-N50	ASM98_C-N50	ASD16B-S	AS98_SP-N50	ASM98 C-N50	ASD16B-SP	
	AS66_S2-H50	ASM66 C2-H50	ASD12B-S	AS66 SP2-H50	ASM66 C2-H50	ASD12B-SP	
HG Geared	AS66 S2-H100	ASM66 C2-H100	ASD12C-S	AS66 SP2-H100	ASM66 C2-H100	ASD12C-SP	
Geareu	AS98_S-H50	ASM98C-H50		AS98 SP-H50	ASM98 C-H50		
	AS98_S-H100	ASM98 C-H100	ASD16B-S	AS98 SP-H100	ASM98 C-H100	ASD16B-SP	

• Enter **A** (Standard) or **M** (electromagnetic brake) in the box (\Box) within the model numbers.

Additional Information

Technical Reference ······	F-1
General Information	G-1

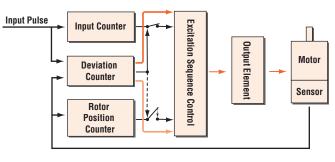
Closed Loop Stepping Motor and Driver Package *QSTEP*® **ASC** Series


The α_{STEP} is a revolutionary hybrid stepping motor and driver package which eliminates missed steps, a common probrem with stepping motors. The α_{STEP} uses a built-in feedback device that constantly monitors the motor shaft position to detect and correct for loss of synchronism. Geared models are available.

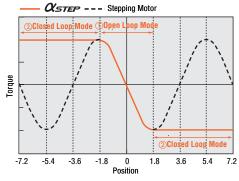
Features

Closed loop control prevents loss of synchronism.

 $\mathcal{X}_{\text{STEP}}$ does not lose synchronism even when subjected to abrupt load fluctuation or acceleration.


A newly developed rotor position detection sensor constantly monitors the motor movement. If synchronism is about to be lost, closed loop control is used, so there is no need to worry about loss of steps.

.



Normal (Positioning Deviation is less than \pm 1.8°) Motor runs in open loop mode like a stepping motor.

If Motor Missteps (Positioning Deviation is greater than $\pm 1.8^{\circ}$) Control switches to closed loop mode to prevent loss of synchronism.

♦ 𝒫₅теР Angle-Torque Characteristics

① If the positioning deviation is ±1.8° or smaller, the motor runs in open loop mode like a stepping motor.
 ② If the positioning deviation is ±1.8° or greater, the motor runs in

If the positioning deviation is ±1.8° or greater, the motor runs in closed loop mode and the position is corrected by exciting the motor windings to generate maximum torque based on the rotor position.

Introduction

AS

AS PLUS

RK

СГКП

CSK

PMC

UMK

CSK

PK/PV

UI2120G

AC

Input DC Input

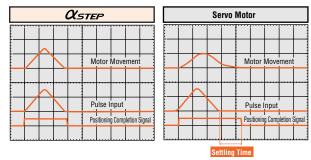
5-Phase Microstep

5-Phase Full/Half

DC Input

2-Phase Full/Half AC Input DC Input

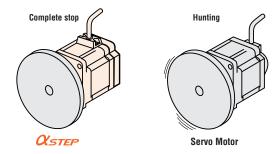
Encoder


Encode PR

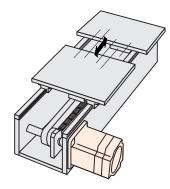
2-Phase Stepping Motors

High Response

Like conventional stepping motors, *Aster* operates in synchronism with command pulses. This makes possible short stroke positioning in a short time.

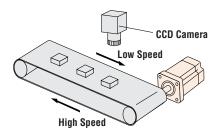

Measurement condition : Feed 1/5 rotation Load Inertia (J) =1.37 oz-in²(250×10⁻⁷ kg·m²)

• In traditional servo motors, there is a delay between the input pulse signals and the motor movement due to the way positioning is continuously monitored. Therefore, a servo motor needs time to settle to a stop after input signals stop. This is called settling time.


No Hunting

Since α_{STEP} is a stepping motor, it has no hunting problem such as might be found in a traditional servo motor. Therefore, when it stops, its position is completely stable and does not fluctuate. α_{STEP} is ideal for applications in which vibration would be a problem.

No Gain Tuning


Gain tuning for servo motors is critical, troublesome and time-consuming. Since the α_{STEP} operates like a stepping motor, there are no gain tuning requirements. Low rigidity applications, such as belt and pulley, are ideal for *Q_STEP*.

Low Vibration at Low Speed

The driver employs advanced technology that produces smoothness comparable to a microstepping driver. Its vibration level is incredibly low, even when operating in the low speed range. When frequent changes from low (high) to high (low) speed operation are required, the use of the Resolution Select Function solves the problem.

Olympice provides resolution as low as 0.036° per step without any damping mechanism or other mechanical device. Even smoother operation is possible with geared models.

 $lpha_{ imes rep}$ is well-suited to applications where smooth movement or stability is required, such as where a camera is used to monitor the quality of a product

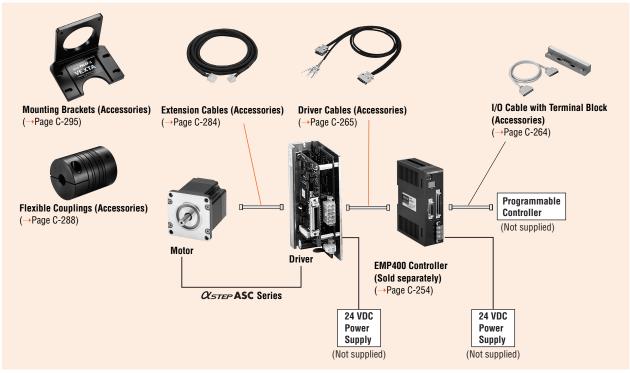
Safety Standards and CE Marking

Model	Standards	Certification Body	Standards File No.	CE Marking
Motor	UL60950		E208200	
IVIOLOI	CSA C22.2 No.60950		E200200	
	UL508C		E171462	EMC Directives
Dairea	CSA C22.2 No.14	UL	E171402	
Driver	UL60950		500000	
	CSA C22.2 No.60950		E208200	

• When the system is approved under various safety standards, the model names in the motor and driver nameplates are the approved model names.

List of Motor and Driver Combinations→Page C-76

● Details of Safety Standards → Page G-2


The EMC value changes according to the wiring and layout. Therefore, the final EMC level must be checked with the motor/driver incorporated in the user's equipment.

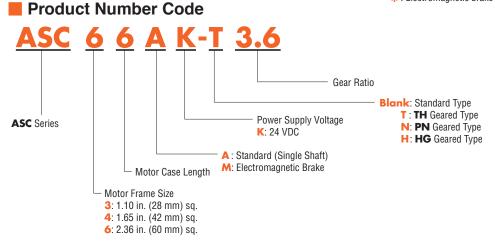
SG8030J

SMK

Access

System Configuration

*An example of a single-axis system configuration with the EMP400 Series contoller.


Extension Cables (For ASC Series)

Extension cables are not included with α_{STEP} products. When using the α_{STEP} stepping motor and driver more than 1.31 feet (0.4 m) apart from each other, use an optional extension cable (sold separately). Note:

• Electromagnetic brake motor models [except motor frame size 1.65 in. (42 mm)] must use an optional electromagnetic brake extension cable. The frame size 1.65 in. (42 mm) models can use a standard extension cable even for electromagnetic brake motor models.

Product Line

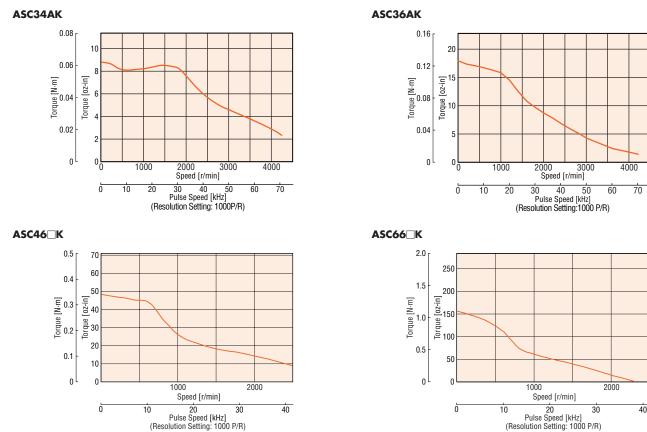
Туре	Power Supply Voltage	Maximum Holding Torque				
		□1.10 in. (□28 mm)	□1.65 in. (□42 mm)	□2.36 in. (□60 mm)		
Round Shaft Type	24 VDC -	7.8∼17 oz-in * (0.055∼0.12 N⋅m)	42 oz-in (0.3 N⋅m)	142 oz-in (1 N⋅m)		
TH Geared Type		_	3~13.2 lb-in (0.35~1.5 N⋅m)	11∼35 lb-in (1.25∼4 N⋅m)		
PN Geared Type			13.2 lb-in (1.5 N⋅m)	30∼70 lb-in (3.5∼8.0 N⋅m)		
HG Geared Type		13.2∼17.7 lb-in * (1.5∼2 N·m)	30~44 lb-in (3.5~5.0 N⋅m)	48∼70 lb-in (5.5∼8.0 N⋅m)		

* : Electromagnetic brake models not available.

Standard Type Motor Frame Size: 1.10 in. (28 mm), 1.65 in. (42 mm), 2.36 in. (60 mm)

Specifications

Madal	w/o Electromagnetic Brake	ASC34AK	ASC36AK	ASC46AK	ASC66AK	
Model	Electromagnetic Brake	_	_	ASC46MK	ASC66MK	
Maximum Holding Torque oz-in (N·m)		7.8 (0.055)	17 (0.12)	42 (0.3)	142 (1)	
Rotor Inertia ^{*1} J	oz-in² (kg⋅m²)	0.06 (11×10 ⁻⁷)	0.148 (27×10 ⁻⁷)	0.37 (68×10⁻) [0.45 (83×10⁻)]	2.2 (405×10⁻²) [3.1 (564×10⁻²)]	
Resolution ^{*2} (Setting by Resolution Switch and				0.036°/Pulse (10000 P/R) 0.072°/Pulse (5000 P/R)		
Voltage			24 VD0	C±10%		
Power Source	Maximum Input Current	1.0 A	1.1 A	1.7 A	3.7 A	
	Туре	-		Active when power is off		
	Power Supply Input	-		24 VDC±5%		
Electromagnetic Brake ^{*3}	Power Consumption	-		2 W	6 W	
DIAKE	Excitation Current	-		0.08 A	0.25 A	
Static Fric	tion Torque oz-in (N·m)	-		21 (0.15)	85 (0.6)	
Weight*1	Motor Ib. (kg)	0.33 (0.15)	0.48 (0.22)	1.1 (0.5) [1.3 (0.6)]	1.9 (0.85) [2.4 (1.1)]	
weight	Driver Ib. (kg)	0.55		5 (0.25)		
Dimension No	Motor	[1	2	3	
Dimension No.	Driver					


*1 The values inside the brackets [] represent the specification for the electromagnetic brake type.

*2 The resolution can be set to any one of 500 P/R, 1000 P/R, 5000 P/R, or 10000 P/R with the resolution select switch or resolution select switching signals. "Resolution Select" switch \rightarrow Page C-72

*3 The electromagnetic brakes are for holding the position when the power is off. They cannot be used for complicated braking. Also, a separate 24 VDC ±5%, 0.3 A min. power supply is required for the electromagnetic brakes.

How to Read Specifications Table→Page C-9

Speed — Torque Characteristics How to Read Speed-Torque Characteristics→Page C-10

Notes:

- Pay attention to heat dissipation from motor and driver. In particular, remember that the motor will produce a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 212 °F (100 °C). [Under 176 °F (75 °C) is required to comply with UL or CSA standards.]
- When using the motor with the dedicated driver, the driver's automatic current cutbuck at motor standstill function reduces maximum holding torque by approximately 50%

Introduction

AS AC Input

AS PLUS

RR

CFKI

CSK

PMC

UMK

CSK

PK/PV

PR

Low-Speed ynchronou Motors

Accessories

a Stepping Motor

otor & Driver Packa

TH Geared Type

Specifications

Model	w/o Electromagnetic Brake	ASC46AK-T3.6	ASC46AK-T7.2	ASC46AK-T10	ASC46AK-T20	ASC46AK-T30		
Wodel	Electromagnetic Brake	ASC46MK-T3.6	ASC46MK-T7.2	ASC46MK-T10	ASC46MK-T20	ASC46MK-T30		
Maximum Holding Torque Ib-in (N·m)		3 (0.35)	6.1 (0.7)	8.8 (1)	13.2 (1.5)	13.2 (1.5)		
Rotor Inertia*1 J	oz-in² (kg·m²)		0.37	(68×10 ⁻⁷) [0.45 (83×1	0-7)]			
Backlash	arc min (degrees)	45 (0.75°)	25 (0.417°)	25 (0.417°)	15 (0.25°)	15 (0.25°)		
Permissible Speed Rang	e r/min	0~500	0~250	0~180	0~90	0~60		
Gear Ratio		3.6:1	7.2:1	10:1	20:1	30:1		
Resolution*2	1000 P/R	0.1°/pulse	0.05°/pulse	0.036°/pulse	0.018°/pulse	0.012°/pulse		
Permissible Torque	Permissible Torque Ib-in (N·m)		6.1 (0.7)	8.8 (1)	13.2 (1.5)	13.2 (1.5)		
Power Source Volta	ge·Maximum Input Current		24 VDC±10% 1.7 A					
	Туре	Active when power is off						
Electromagnetic	Power Supply Input	24 VDC±5%						
Brake ^{*3}	Power Consumption		2 W					
	Excitation Current		0.08 A					
Static Fric	tion Torque Ib-in (N·m)	1.5 (0.17)	3 (0.35)	4.4 (0.5)	6.6 (0.75)	6.6 (0.75)		
Weight*1	Motor Ib. (kg)			1.4 (0.65) [1.7 (0.75)]				
weight	Driver Ib. (kg)	0.55 (0.25)						
Dimension No.	Motor			4				
DIMENSION NO.	Driver							

*1 The values inside the brackets [] represent the specification for the electromagnetic brake type.

*2 The resolution can be set to any one of 500 P/R, 1000 P/R, 5000 P/R, or 10000 P/R with the resolution select switch or resolution select switching signals. "Resolution Select" switch → Page C-72

*3 The electromagnetic brakes are for holding the position when the power is off. They cannot be used for complicated braking. Also, a separate 24 VDC \pm 5%, 0.3 A min.

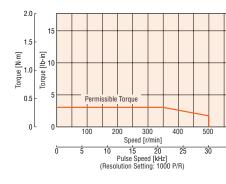
power supply is required for the electromagnetic brakes.

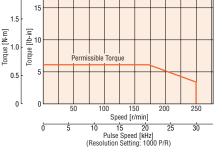
How to Read Specifications Table→Page C-9

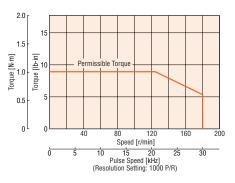
Note:

• Direction of rotation of the motor shaft and that of the gear output shaft are the same for models with gear ratios of 3.6:1, 7.2:1 and 10:1.

The direction of rotation is opposite for models with gear ratios of 20:1 and 30:1.

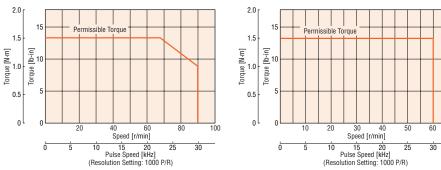

Speed — Torque Characteristics How to Read Speed-Torque Characteristics → Page C-10


ASC46 K-T3.6


ASC46_K-T7.2

2.0

ASC46 K-T10



ASC46 K-T20

Notes:

• Pay attention to heat dissipation from motor and driver. In particular, remember that the motor will produce a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 212 °F (100 °C). [Under 176 °F (75 °C) is required to comply with UL or CSA standards.]

• When using the motor with the dedicated driver, the driver's automatic current cutbuck at motor standstill function reduces maximum holding torque by approximately 50%.

TH Geared Type

Specifications

Model	w/o Electromagnetic Brake	ASC66AK-T3.6	ASC66AK-T7.2	ASC66AK-T10	ASC66AK-T20	ASC66AK-T30		
WOUEI	Electromagnetic Brake	ASC66MK-T3.6	ASC66MK-T7.2	ASC66MK-T10	ASC66MK-T20	ASC66MK-T30		
Maximum Holding Torque	lb-in (N⋅m)	11 (1.25)	22 (2.5)	26 (3)	30 (3.5)	35 (4)		
Rotor Inertia*1 J	oz-in² (kg·m²)		2.2 ((405×10 ⁻⁷) [3.1 (564×1	0-7)]			
Backlash	arc min (degrees)	35 (0.584°)	15 (0.25°)	15 (0.25°)	10 (0.167°)	10 (0.167°)		
Permissible Speed Range	r/min	0~500	0~250	0~180	0~90	0~60		
Gear Ratio		3.6:1	7.2:1	10:1	20:1	30:1		
Resolution*2	1000 P/R	0.1°/pulse	0.05°/pulse	0.036°/pulse	0.018°/pulse	0.012°/pulse		
Permissible Torque	lb-in (N⋅m)	11 (1.25)	22 (2.5)	26 (3)	30 (3.5)	35 (4)		
Power Source Voltag	e Maximum Input Current	24 VDC±10% 3.7 A						
	Туре	Active when power is off						
Electromagnetic	Power Supply Input	24 VDC±5%						
Brake ^{*3}	Power Consumption	6 W						
Diako	Excitation Current			0.25 A				
Static Frict	ion Torque Ib-in (N·m)	5.4 (0.62)	11 (1.25)	13.2 (1.5)	15.4 (1.75)	17.7 (2.0)		
Weight*1	Motor Ib. (kg)		2.8 (1.25) [3.3 (1.5)]					
Weight	Driver Ib. (kg)	0.55 (0.25)						
Dimension No.	Motor			5				
Dimension No.	Driver		 [1]					

*1 The values inside the brackets [] represent the specification for the electromagnetic brake type.

*2 The resolution can be set to any one of 500 P/R, 1000 P/R, 5000 P/R, or 10000 P/R with the resolution select switch or resolution select switching signals. "Resolution Select" switch → Page C-72

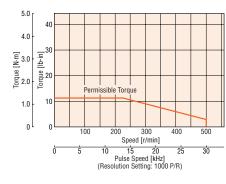
*3 The electromagnetic brakes are for holding the position when the power is off. They cannot be used for complicated braking. Also, a separate 24 VDC ±5%, 0.3 A min. power supply is required for the electromagnetic brakes.

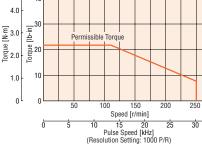
How to Read Specifications Table→Page C-9

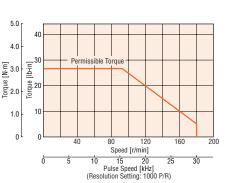
Note:

Direction of rotation of the motor shaft and that of the gear output shaft are the same for models with gear ratio of 3.6:1, 7.2:1 and 10:1. The direction of rotation is opposite for models with gear ratios of 20:1 and 30:1.

Speed — Torque Characteristics How to Read Speed-Torque Characteristics → Page C-10

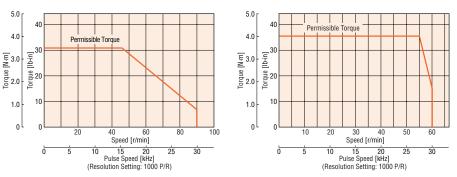

5.0


ASC66 K-T3.6


ASC66 K-T7.2

40

ASC66 K-T10



ASC66 K-T20

5.0

4.0

ASC66 K-T30

Notes:

• Pay attention to heat dissipation from motor and driver. In particular, remember that the motor will produce a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 212 °F (100 °C). [Under 176 °F (75 °C) is required to comply with UL or CSA standards.]

• When using the motor with the dedicated driver, the driver's automatic current cutbuck at motor standstill function reduces maximum holding torque by approximately 50%

Introduction

AS AC Input

AS PLUS

RR

CFKI

CSK

PN Geared Type

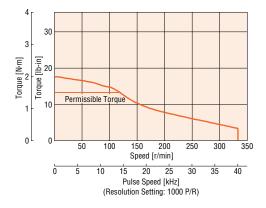
Specifications How to Read Specifications Table→Page C-9

w/o Electromagnetic Bracke ASC46AK-N7.2 ASC46AK-N10 Model Electromagnetic Brake ASC46MK-N7.2 ASC46MK-N10 lb-in (N·m) Maximum Holding Torque 13.2 (1.5) oz-in² (kg·m²) 0.37 (68×10⁻⁷) [0.454 (83×10⁻⁷)] Rotor Inertia*1 J Backlash arc min (degrees) 2 (0.034°) Angle Error arc min (degrees) 6 (0.1°) Permissible Speed Range 0~333 0~240 r/min Gear Ratio 7.2:1 10:1 Resolution 1000 P/R 0.5°/pulse 0.036°/pulse Permissible Torque lb-in (N·m) 13.2 (1.5) Maximum Torque* lb-in (N·m) 17.7 (2) Power Source Voltage-Maximum Input Current 24 VDC±10% 1.7 A Туре Active when power is off Power Supply Input 24 VDC±5% Electromagnetic Power Consumption 2 W Brake* Excitation Current 0.08 A Static Friction Torque Ib-in (N·m) 6.6 (0.75) Motor lb. (kg) 1.6 (0.71) [1.8 (0.81)] Weight*1 Driver lb. (kg) 0.55 (0.25) Motor 6 Dimension No. Driver 11

*1 The values inside the brackets [] represent the specification for the electromagnetic brake type.

*2 The resolution can be set to any one of 500 P/R, 1000 P/R, 5000 P/R, or 10000 P/R with the resolution select switch or resolution select switching signals.

"Resolution Select" switch \rightarrow Page C-72


*3 The electromagnetic brakes are for holding the position when the power is off. They cannot be used for complicated braking. Also, a separate 24 VDC ±5%, 0.3 A min. power supply is required for the electromagnetic brakes.


*4 The value of Maximum Torque is for gear. For output torque for geared motor, refer to the Speed - Torque characteristics.

Note:

Direction of rotation of the motor shaft and that of the gear output shaft is the same.

■ Speed — Torque Characteristics How to Read Speed-Torque Characteristics→Page C-10 ASC46□K-N7.2 ASC46□K-N10

Notes:

- Pay attention to heat dissipation from motor and driver. In particular, remember that the motor will produce a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 212 °F (100 °C). [Under 176 °F (75 °C) is required to comply with UL or CSA standards.]
- When using the motor with the dedicated driver, the driver's automatic current cutbuck at motor standstill function reduces maximum holding torque by approximately 50%.

PN Geared Type

Specificati	ONS How to Read S	ecifications Table	→Page C-9					
Model	w/o Electromagnetic Brake	ASC66AK-N5	ASC66AK-N7.2	ASC66AK-N10	ASC66AK-N25	ASC66AK-N36	ASC66AK-N50	
WOUEI	Electromagnetic Brake	ASC66MK-N5	ASC66MK-N7.2	ASC66MK-N10	ASC66MK-N25	ASC66MK-N36	ASC66MK-N50	
Maximum Holding Torq	ue Ib-in (N·m)	30 (3.5)	35 (4.0)	44 (5.0)		70 (8.0)		
Rotor Inertia ^{*1} J	oz-in² (kg⋅m²)			2.2 (405×10 ⁻⁷)	[3.1 (564×10 ⁻⁷)]			
Backlash	arc min (degrees)		2 (0.034°)			3 (0.05°)		
Angle Error	arc min (degrees)			5 (0.)84°)			
Permissible Speed Rang	Permissible Speed Range r/min		0~250	0~180	0~72	0~50	0~36	
Gear Ratio	Gear Ratio		7.2:1	10:1	25:1	36:1	50:1	
Resolution*2	1000 P/R	0.072°/pulse	0.05°/pulse	0.036°/pulse	0.0144°/pulse	0.01°/pulse	0.0072°/pulse	
Permissible Torque	lb-in (N⋅m)	30 (3.5)	35 (4.0)	44 (5.0)	70 (8.0)			
Maximum Torque ^{*4}	lb-in (N⋅m)	61 (7)	79 (9)	97 (11)	140 (16)	170 (20)	170 (20)	
Power Source Volt	age·Maximum Input Current	24 VDC±10% 3.7 A						
	Туре	Active when power is off						
Flootromognatio	Power Supply Input	24 VD0			C±5%			
Electromagnetic Brake ^{*3}	Power Consumption			6	W			
Brailo	Excitation Current	0.25 A						
Static Friction Torque Ib-in (N·m)		15.4 (1.75)	17.7 (2.0)	22 (2.5)		35 (4.0)		
Weight*1	Motor Ib. (kg)		3.3 (1.5) [3.9 (1.75)]	3.7 (1.7) [4.3 (1.95)]			
weight	Driver Ib. (kg)							
Dimension No.	Motor				7			
DIMENSION NO.	Driver			1	1			

*1 The values inside the brackets [] represent the specification for the electromagnetic brake type.

*2 The resolution can be set to any one of 500 P/R, 1000 P/R, 5000 P/R, or 10000 P/R with the resolution select switch or resolution select switching signals.

"Resolution Select" switch → Page C-72
 *3 The electromagnetic brakes are for holding the position when the power is off. They cannot be used for complicated braking. Also, a separate 24 VDC ±5%, 0.3 A min. power supply is required for the electromagnetic brakes.

*4 The value of Maximum Torque is for gear. For output torque for geared motor, refer to the Speed - Torque characteristics.

Note:

• Direction of rotation of the motor shaft and that of the gear output shaft is the same.

(Resolution Setting: 1000 P/R)

Speed — Torque Characteristics How to Read Speed-Torque Characteristics→Page C-10

ASC66 K-N5 ASC66 K-N7.2 ASC66 K-N10 25 25 25 200 200 200 20 20 20 150 [lb-in] [m·15 10 10 [W-15 10-10 [m·15 10 10 [lb-in] [Ib-in] Torque 1 orque 100 100 50 50 50 Permissible Torque Permissible Torque Permissible Torque n Λ ٥ 200 Speed [r/min] Speed [r/min] Speed [r/min] ō 30 õ 30 25 ō 5 10 15 20 25 Pulse Speed [kHz] Pulse Speed [kHz] Pulse Speed [kHz] (Resolution Setting: 1000 P/R) (Resolution Setting: 1000 P/R) (Resolution Setting: 1000 P/R) ASC66 K-N25 ASC66 K-N36 ASC66 K-N50 25 25 200 200 200 Maximum Torque 20 20 20 [m·15 10 10 [N-15 [N-10 10 [Ib-in] [Ib-in] 띧 15 신 [Ib-in] Tordue Tordue ______100 ______100] anbio 10 Permissible Torque Permissible Torque Permissible Torque 50 50 50 5 n n ٥ 20 60 80 10 30 Speed [r/min] Speed [r/min] Speed [r/min] ŏ 5 10 15 20 30 20 25 30 ō 10 15 20 25 30 10 Pulse Speed [kHz] Pulse Speed [kHz] Pulse Speed [kHz]

Notes:

Pay attention to heat dissipation from motor and driver. In particular, remember that the motor will produce a considerable amount of heat under certain conditions. Be sure
to keep the temperature of the motor case under 212 °F (100 °C). [Under 176 °F (75 °C) is required to comply with UL or CSA standards.]

(Resolution Setting: 1000 P/R)

• When using the motor with the dedicated driver, the driver's automatic current cutbuck at motor standstill function reduces maximum holding torque by approximately 50%.

Introduction

AC Input

AS PLUS

RR

CFKI

CSK

PMC

UMK

CSK

PK/PV

PR

UI2120G

EMP401 EMP402

SC8800E SG8030J SMK

Accessories

a Stepping Motor

(Resolution Setting: 1000 P/R)

5-Phase Microstep 5-Phase Full/Half AC Input DC Input DC Input

2-Phase Full/Half without with AC Input DC Input Encoder Encoder

2-Phase Stepping Motors without with

Driver with Indexe

Controllers

HG Geared Type Motor Frame Size: □ 1.10 in. (□ 28 mm), □ 1.65 in. (□ 42 mm)

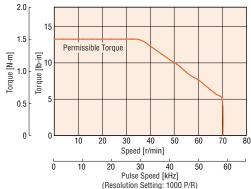
Specifications

c**₩1**us(€

Model	w/o Electromag	netic Brake	ASC34AK-H50	ASC34AK-H100	ASC46AK-H50	ASC46AK-H100	
Model	Electromagne	etic Brake		—	ASC46MK-H50	ASC46MK-H100	
Maximum Holding Torque	lb	-in (N⋅m)	13.2 (1.5)	17.7 (2)	30 (3.5)	44 (5.0)	
Rotor Inertia ^{*1} J	oz-ir	I ² (kg⋅m ²)	0.153 (2	8×10 ⁻⁷)	0.46 (85×10 ⁻⁷) [0.55 (100×10 ⁻⁷)]	
Permissible Speed Range		r/min	0~70	0~35	0~48	0~24	
Gear Ratio			50:1	100:1	50:1	100:1	
Resolution*2		1000 P/R	0.0072°	0.0036°	0.0072°	0.0036°	
Permissible Torque	lb	-in (N⋅m)	13.2 (1.5)	17.7 (2)	30 (3.5)	44 (5.0)	
Maximum Torque	lb	-in (N⋅m)	17.7 (2)	24 (2.8)	73 (8.3)	97 (11)	
Lost Motion (Load Torque	Lost Motion (Load Torque) arc min		Max. 3 (±0.06 N·m)	Max. 3 (±0.08 N·m)	Max. 1.5 (±0.16 N·m)	Max. 1.5 (±0.2 N·m)	
Power Source Voltag	e∙Maximum Inp	ut Current	24 VDC±	10% 1.0 A	24 VDC±10% 1.7 A		
	Туре		_		Active when power is off		
Flastromognatio	Power Suppl	y Input	-	_	24 VDC±5%		
Electromagnetic Brake ^{*3}	Power Consu	umption	-	_	2 W		
Diako	Excitation Cu	irrent			0.08 A		
Static Frict	ion Torque Ib-	in (N∙m)	-	_	15.4 (1.75)	22 (2.5)	
Weight ^{*1}	Motor	lb. (kg)	0.55 (0.25)	1.5 (0.7) [1.8 (0.8)]		
weight	Driver	lb. (kg)	0.55 ((0.25)		
Dimension No.	Motor		8	}	9		
Dimension No.	Driver			1	1		

*1 The values inside the brackets [] represent the specification for the electromagnetic brake type.

*2 The resolution can be set to any one of 500 P/R, 1000 P/R, 5000 P/R, or 10000 P/R with the resolution select switch or resolution select switching signals. "Resolution Select" switch → Page C-72

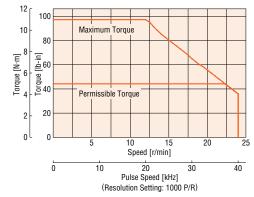

*3 The electromagnetic brakes are for holding the position when the power is off. They cannot be used for complicated braking. Also, a separate 24 VDC ±5%, 0.3 A min. power supply is required for the electromagnetic brakes.

How to Read Specifications Table→Page C-9

Note:

The inertia represents a sum of the inertia of the harmonic gear converted to a motor shaft value, and the rotor inertia. Direction of rotation of the motor shaft and that of
the gear output shaft is opposite.

Speed — Torque Characteristics How to Read Speed-Torque Characteristics→Page C-10 ASC34AK-H100



3.0 25 Maximum Torque 2.5 20 [lb-in] Permissible Torque Torque [N·m] 1.5 Forgue [1.0 0.5 0 Λ 10 20 Speed [r/min] 30 40 0 10 30 50 60 20 40 Pulse Speed [kHz] (Resolution Setting: 1000 P/R)

ASC46 K-H50

Notes:

Pay attention to heat dissipation from motor and driver. In particular, remember that the motor will produce a considerable amount of heat under certain conditions. In
order to prevent fatigue of the gear grease in the harmonic gear, keep the temperature of the gear case under 158 °F (70 °C).

• When using the motor with the dedicated driver, the driver's automatic current cutbuck at motor standstill function reduces maximum holding torque by approximately 50%.

HG Geared Type

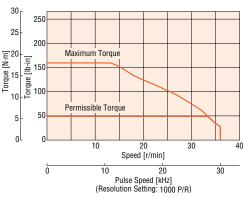
Specifications

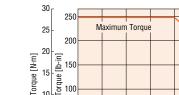
Madal	w/o Electron	nagnetic Brake	ASC66AK-H50	ASC66AK-H100			
Model	Electroma	gnetic Brake	ASC66MK-H50	ASC66MK-H100			
Maximum Holding Tor	que	lb-in (N⋅m)	48 (5.5)	70 (8.0)			
Rotor Inertia*1 J	02	z-in² (kg⋅m²)	2.3 (422×10 ⁻⁷)	[3.2 (581×10 ⁻⁷)]			
Permissible Speed Rar	nge	r/min	0~36	0~18			
Gear Ratio			50:1	100:1			
Resolution*2		1000P/R	0.0072°/pulse	0.0036°/pulse			
Permissible Torque		lb-in (N⋅m)	48 (5.5)	70 (8.0)			
Maximum Torque		lb-in (N⋅m)	159 (18)	240 (28)			
Lost Motion (Load Tor	que)	arc min	Max. 0.7 (±0.28 N⋅m)	Max. 0.7 (±0.39 N·m)			
Power Source Vo	ltage·Maximum	Input Current	24 VDC±10% 3.7 A				
	Туре		Active when power is off				
Flootromognatio	Power Su	pply Input	24 VDC±5%				
Electromagnetic Brake ^{*3}	Power Cor	nsumption	6 W				
σιακο	Excitation	Current	0.25 A				
Static F	riction Torque	lb-in (N·m)	24 (2.75)	35 (4)			
Weight*1	Motor	lb. (kg)	3.1 (1.4) [3.6 (1.65)]			
weight	Driver	lb. (kg)	0.55 (0.25)				
Dimension No.	Motor		1	0			
	Driver		1	1			

*1 The values inside the brackets [] represent the specification for the electromagnetic brake type.

*2 The resolution can be set to any one of 500 P/R, 1000 P/R, 5000 P/R, or 10000 P/R with the resolution select switch or resolution select switching signals. "Resolution Select" switch → Page C-72

*3 The electromagnetic brakes are for holding the position when the power is off. They cannot be used for complicated braking. Also, a separate 24 VDC ±5%, 0.3 A min. power supply is required for the electromagnetic brakes.


How to Read Specifications Table→Page C-9


Note:

• The inertia represents a sum of the inertia of the harmonic gear converted to a motor shaft value, and the rotor inertia. Direction of rotation of the motor shaft and that of the gear output shaft is opposite.

Speed — Torque Characteristics How to Read Speed-Torque Characteristics→Page C-10

ASC66 K-H50

Permissible Torque

10

10

Speed [r/min]

Pulse Speed [kHz]

(Resolution Setting: 1000 P/R)

20

15

20

30

Torque

10

5

100

50

ñ

ASC66 K-H100

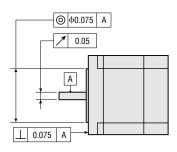
Stepping Motors

°**A7** ns C E

Notes:

- Pay attention to heat dissipation from motor and driver. In particular, remember that the motor will produce a considerable amount of heat under certain conditions. In order to prevent fatigue of the gear grease in the harmonic gear, keep the temperature of the gear case under 158 °F (70 °C).
- When using the motor with the dedicated driver, the driver's automatic current cutbuck at motor standstill function reduces maximum holding torque by approximately 50%

Common Specifications


Maximum Input Pulse Frequency	250 kHz				
Speed • Positioning Control Command	Pulse Train Input				
Protection Functions	When the protection functions are activated, an alarm signal is output and the motor stops automatically. Overload Protection, Overvoltage Protection, Speed Error Protection, Overspeed protection, EEPROM Data Error, Sensor Error, System Error				
Input Signals Photocoupler Input (Forward Pulse, Reverse Pulse, Current Off, Alarm Clear, Resolution Setting)					
Output Signals	Photocoupler • Open Collector Output External equipment requirement Less than 30 VDC, 15 mA (Positioning Completion, Alarm, Timing) Transistor • Open Collector Output External equipment requirement Less than 30 VDC, 15 mA (Feedback Pulse A • B phase)				

General Specifications

		Motor	Driver	
Insulation Clas	S	Class B [266°F (130°C)]	—	
Insulation Resistance		100 MΩ minimum when measured by a 500 VDC megger between the following places · Frame-Motor and Sensor Windings	100 MΩ minimum when measured by a 500 VDC megger between the following places · Heat Sink-Power Supply Terminal	
Dielectric Strength		Sufficient to withstand the following for one minute · Frame-Motor and Sensor Windings 0.5 kV 60 Hz	Sufficient to withstand the following for one minute • Heat Sink-Power Supply Terminal 0.5 kV 60 Hz	
0 "	Ambient Temperature	32°F~122°F (0°C~+50°C) (nonfreezing): Standard TH-PN Geared Type 32°F~104°F (0°C~+40°C) (nonfreezing): HG Geared Type	$+32^{\circ}F$ ~ $+104^{\circ}F$ (0°C~ $+40^{\circ}C$) (nonfreezing)	
Operating Environment	Ambient Humidity	85% or less (noncondens	ing)	
	Atmosphere	No corrosive gases, dust, wat	er or oil.	
Static Angle Error		±5 minutes	—	
Shaft Runout		0.002 inch (0.05 mm) T.I.R.*	—	
Concentricity		0.003 inch (0.075 mm) T.I.R.*	—	
Perpendiculari	ty	0.003 inch (0.075 mm) T.I.R.*	—	

* T.I.R.(Total Indicator Reading): The total dial gauge reading when the measurement section is rotated one revolution centered on the reference axis center. Note:

• Do not measure insulation resistance or perform the dielectric strength test while the motor and driver are connected.

Stepping Motors

Introduction

AS

AS PLUS

RR

CFKI

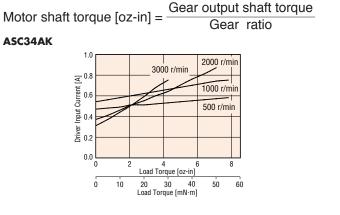
CSK

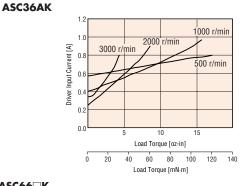
PMC

UMK

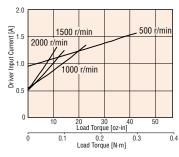
CSK

PK/PV

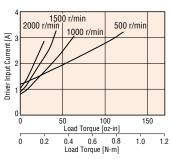

PR


Accessories

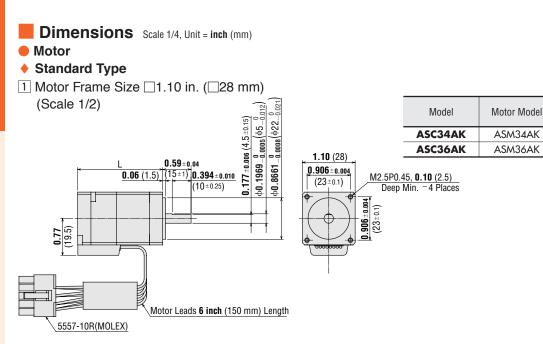
Load Torque-Driver Input Current Characteristics

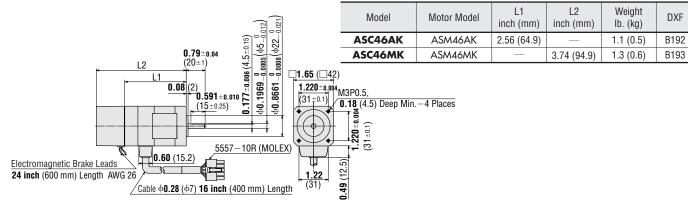

This is the relationship between the load torque and driver input current at each speed when the motor is operated. From these characteristics, the current capacity required when used for multiple axes can be estimated. For geared motors convert to torque and speed at the motor axis.

Motor shaft speed [r/min] = Gear output shaft speed × Gear ratio

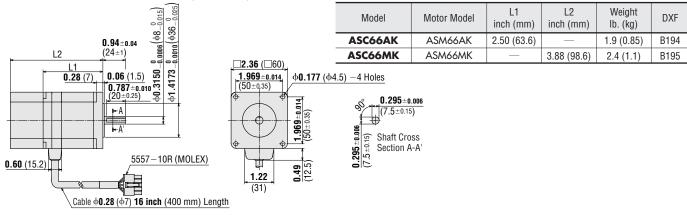


ASC46 K


ASC66 K


Permissible Overhung Load and Permissible Thrust Load

Model		(Distance fro	Thrust Load			
Woddi	0	0.2 (5)	0.39 (10)	0.59 (15)	0.79 (20)	Thrust Loud
ASC34AK	5.6	7.6	11.7			
ASC36AK	25	34	52	_		Keen throat leads
ASC46⊟K	4.5	5.6	7.6	11.7		Keep thrust loads below the weight
AJC40_K	20	25	34	52		of the motor used.
ASC66⊟K	14.1	16.8	21	29	42	
ASCOOLK	63	75	95	130	190	
ASC46 K-T3.6						
ASC46 K-T7.2	22	3.1	4.5	6.7		3.3
ASC46CK-T10	100	14	20	30		3.3 15
ASC46 K-T20	100	14	20	30		15
ASC46 K-T30						
ASC66_K-T3.6						
ASC66_K-T7.2	15	18	22	27	33	9
ASC66 K-T10	70	80	100	120	150	40
ASC66 K-T20	10	00	100	120	150	40
ASC66_K-T30						
ASC46_K-N7.2	22	27	33	42		22
ASC46_K-N10	100	120	150	190		100
ASC66□K-N5	45	49	56	63	72	
	200	220	250	280	320	
ASC66_K-N7.2	56	60	67	76	87	
ASC66 K-N10	250	270	300	340	390	
ASC66 K-N25	74	81	90	101	117	22
ASC66_K-N36	330	360	400	450	520	100
ASC66 K-N50					520	
ASC34AK-H50	31	36	45	54		
ASC34AK-H100	140	160	200	240		
ASC46 K-H50	40	49	60	81	114	54
ASC46 K-H100	180	220	270	360	510	240
ASC66 K-H50	72	83	99	123	162	105
ASC66 K-H100	320	370	440	550	720	470


Unit = Upper values: Ib./Lower values: N

2 Motor Frame Size 1.65 in. (42 mm)

3 Motor Frame Size 2.36 in. (60 mm)

L

inch (mm)

1.77 (45)

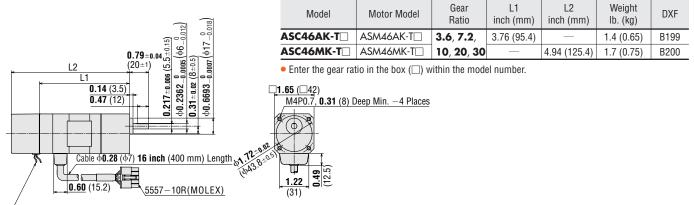
2.56 (65)

Weight

lb. (kg)

0.33 (0.15)

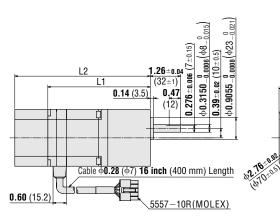
0.48 (0.22)


DXF

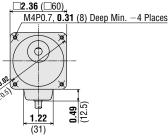
B274

B275

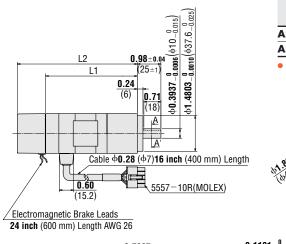
• TH Geared Type

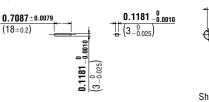

4 Motor Frame Size □1.65 in. (□42 mm)

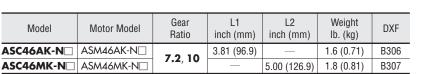
Electromagnetic Brake Leads


24 inch (600 mm) Length AWG 26

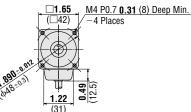
5 Motor Frame Size 2.36 in. (60 mm)


Model	Motor Model	Gear Ratio	L1 inch (mm)	L2 inch (mm)	Weight Ib. (kg)	DXF
ASC66AK-T	ASM66AK-T	3.6 , 7.2 ,	4.28 (108.6)	_	2.8 (1.25)	B201
ASC66MK-T	ASM66MK-T	10, 20, 30		5.65 (143.6)	3.3 (1.5)	B202


• Enter the gear ratio in the box (\Box) within the model number.


PN Geared Type

6 Motor Frame Size 1.65 in. (42 mm)



Parallel Key (Included)

• Enter the gear ratio in the box (\Box) within the model number.

Shaft Cross Section A-A'

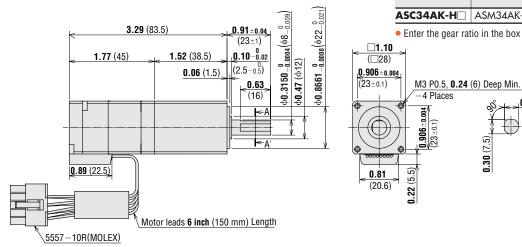
	Model		Ratio	inch (mm)	inch (mm)	lb. (kg)	DA
	ASC66AK-N	ASM66AK-N	5, 7.2 , 10	4.24 (107.6)	—	3.3 (1.5)	B226
	ASC66AK-N	ASM66AK-N□	25, 36, 50	4.87 (123.6)	—	3.7 (1.7)	B228
	ASC66MK-N	ASM66MK-N	5, 7.2 , 10	_	5.61 (142.6)	3.9 (1.75)	B227
00000000000000000000000000000000000000	ASC66MK-N	ASM66MK-N	25, 36, 50		6.24 (158.6)	4.3 (1.95)	B229
	 Enter the gear rate 	tio in the box (\Box) w	vithin the mode	el number.			
L2 1.50 ±0.04 8 8	⊇2.36 (□ 60) ₊						
	M5P0.8, 0.39 (10) Deep Min4 Places	_		012			
0.24 (6) 0.98 72 199 (25) 0.24 (6) 0.98 72 199 (25) 0.24 72 199 0.25 199 0.24 72 199 0.25			0.984				
		0.1575_0.00		1575	0.1575_0	012	
)	0,7			
	χ	8 '					
Cable 40.28 (47) 16 inch (400 mm) Length		F Shaft		el Key (Includeo	d)		
Cable $\phi 0.28 (\phi 7)$ 16 inch (400 mm) Length $37.00 \text{ s}^{-0.5}$		Sectio	III A-A				
	2						

Motor Model

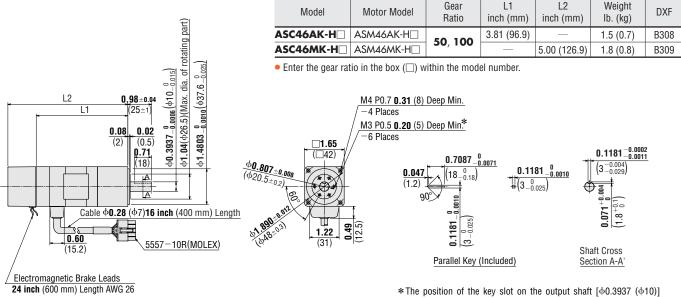
Model

1.22

(31)


0.49 (12.5)

HG Geared Type


0.60 (15.2)

⑧ Motor Frame Size □1.10 in. (□28 mm) (Scale 1/2)

5557-10R(MOLEX)

9 Motor Frame Size 1.65 in. (42 mm)

relative to the screw holes on a maximum diameter of ϕ 1.04 (ϕ 26.5) on the rotating part is arbitrary.

Model	Motor Model	Gear Ratio	Weight Ib. (kg)	DXF
ASC34AK-H	ASM34AK-H	50, 100	0.55 (0.25)	B289

0.30 (7.5)

Shaft cross section

L2

L1

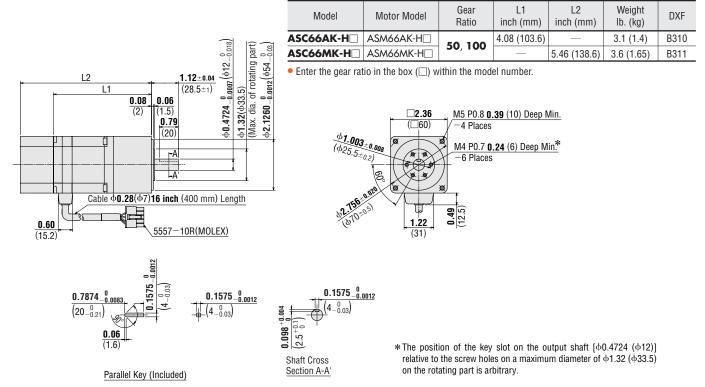
Gear

-4 Places

0.0 5 906

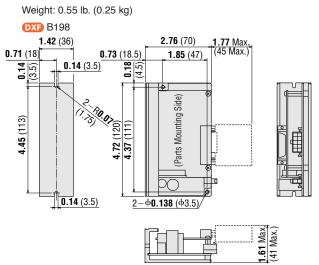
Weight

DXF


• Enter the gear ratio in the box (
) within the model number.

0.30 (7.5)

ORIENTAL MOTOR GENERAL CATALOG 2003/2004


C-70

10 Motor Frame Size 2.36 in. (60 mm)

Driver

11 ASD10A-K, ASD10B-K, ASD10C-K, ASD18A-K, ASD18B-K, ASD36A-K, ASD36B-K

●I/O Connector (included) Connector: 54306-3611 (MOLEX)

Cover Assembly: 54331-1361 (MOLEX)

Introduction

AS

AS PLUS

RR

CFKI

CSK

PMC

UMK

CSK

PK/PV

PR

UI2120G EMP401 SC8800 UI2120G EMP402 SC8800E SG8030J SMK

Accessories

AC Input

5-Phase Microstep 5-Phase Full/Half AC Input DC Input DC Input

2-Phase Full/Half AC Input DC Input

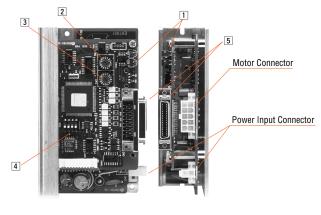
without Encoder

Encoder

2-Phase Stepping Motors without with

Driver with Indexer

Controllers


Low-Speed ynchronou Motors

otor & Driver

ORIENTAL MOTOR GENERAL CATALOG 2003/2004

C-71

Connection and Operation

1 Signal Monitor Display

LED INDICATORS							
Indication	Color	Function	When Activated				
LED1	Green	Power supply indication	Lights when power is on.				
LED2	Red	Alarm indication	Blinks when protection functions are activated				

· Alarm

Blink Count	Protection Function	When Activated
2	Overload	The motor is operated continuously over 5 seconds under
2	Overioau	a load exceeding the maximum torque.
3	Overvoltage	The primary voltage of the driver's inverter exceeds the
3	Overvollage	permissible value.
4	Speed error	The motor cannot accurately follow at the indicated pulse velocity.
6	Overspeed	The motor shaft velocity exceeds 5000 r/min. (Except geared type)
7	EEPROM data error	The EEPROM has a fault.
	C	The power source turns it on when the motor cable is not
8	Sensor error	connected to the driver.
No Blink	System error	The driver has fatal error.

2 Current Adjustment Switch

Indication	Switch Name	Function	
CURRENT	Current adjustment switch	The motor running current can be lowered to suppress temperature rise in the motor and driver, or lower operating current in order to allow a margin for motor torque.	

3 Velocity Filter Adjustment Switch

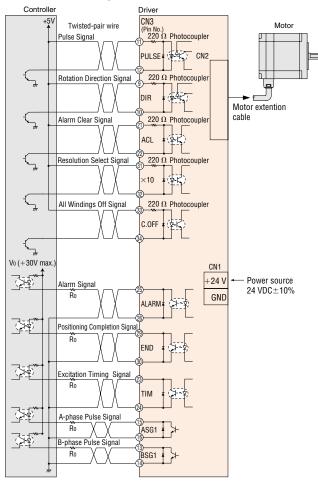
Indication	Switch Name	Function		
V.FIL	Velocity filter adjustment switch	This switch is used to make adjustments when a smooth start-stop or smooth motion at low speed is required.		
		Time		

4 Function Switches

Indication	Switch Name	Function		
1000/500 X1/ X10	Resolution select switch	This function is for selecting the motor resolution. For each geared type, the resolution of gear output shaft is 1/gear ratio. "1000" \times 1" \rightarrow 1000 Pulses (0.36°/step) "1000" \times 10" \rightarrow 10000 Pulses (0.036°/step) "500" \times 1" \rightarrow 500 Pulses (0.72°/step) "500" \times 1" \rightarrow 5000 Pulses (0.072°/step)		
1P/2P	Pulse input mode switch	The settings of this switch are compatible with the following two pulse input modes: "1P" for the 1-pulse input mode, "2P" for the 2-pulse input mode.		

Note:

Always turn the power off before switching resolution or pulse input, and turn it ON again after you have made the change.


If the "Resolution Select" switch is set to " \times 10", it cannot control the resolution selected by the input terminals. It will always be " \times 10".

5 Input/Output Signals

Connector	Pin Number	Input/Output	Signal	Name of Signal	
	2	External power	GND	Power Supply for signal control	
	3	input	Vcc+24V		
	9	Input signal	CCW (DRE)	CCW Pulse (Rotation Direction)*	
	10		CCW (DRE)		
	11		CW (PLS)	CW Pulse (Pulse)*	
	12		CW (PLS)	Gw Puise (Puise)	
	13	Output signal	BSG1	B-Phase Pulse Output (Open Collector)	
	14		GND		
	15		ASG1	A-Phase Pulse Output (Open Collector)	
	16		GND		
CN3	21	Input signal	ACL	Alarm Clear	
6N3	22		ACL	Alarin Glear	
	23	Output signal	TIM1	Timing (Open Collector)	
	24		TIM1	Timing (Open Collector)	
	25		ALARM	Alarm	
	26		ALARM		
	29		END	Positioning Completion	
	30		END		
	31	- Input signal -	×10	Resolution Select	
	32		×10		
	33		C.OFF	All Windings Off	
	34		C.OFF		

Value in parentheses represents the setting in 1-pulse input mode. The setting at shipment is the 2-pulse input mode.

Connection Diagrams

Notes:

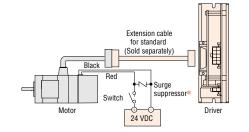
- Vo and the current must be 30 VDC, 15 mA or less respectively. If the current exceeds 15 mA, connect an external resistance Ro.
- Note that as the length of the pulse signal line increases, the maximum transmission frequency decreases.
- Use a multi-core, twisted-pair shielded wire AWG 28 for the control input/output signal line (CN3), and keep wiring as short as possible [within 6.6 feet (2 m)].
- For the wiring between the motor and driver, use an extension cable or flexible cable (sold separately).
- The range of wire for the power connector (CN1) is AWG 18~24. Use wire AWG 20 or thicker for the power line.
- Keep the control input/output signal line at least 1 foot (300 mm) away from power lines (e.g. lines carrying large current, such as AC lines and motor lines). Also, do not run these lines through the same ducts or pipes as power lines.
- Cables for power supply lines and control input/output signal lines are not supplied.
- · Always use the accessory connector to connect the power connector.
- To install the pins, be sure to use the specified crimping tool made by Molex 57026-5000 (for UL1007) or 57027-5000 (for UL1015).

Connecting the Electromagnetic Brake to Power Supply

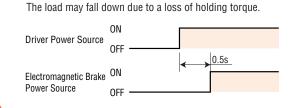
Connect the electromagnetic brake to the power supply using a cable with a conductor cross-sectional area of at least AWG 24. The power supply input to the electromagnetic brake is 24 VDC \pm 5% 0.3 A min. (**ASC46**: 0.1 A min.) and therefore must be independent of the driver's power supply.

Notes:

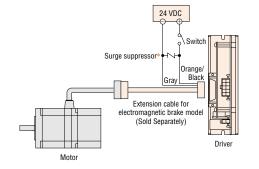
- Applying a voltage that exceeds the specifications will cause the electromagnetic brake to generate a great deal of heat, resulting in motor temperature rises and possible damage to the motor. Conversely, if voltage is too low, the electromagnetic brake may not release.
- To protect the switch contacts and prevent noise, always connect the accessory surge suppressor.
- Correct polarity (+ and -) must be ensured when connecting the electromagnetic brake lead wire of ASC series to the DC power supply. If polarity is incorrect, the electromagnetic brake will not operate properly.
- When using as a CE certified part, use a DC power supply with reinforced insulation for the primary side as the power supply for the electromagnetic brake.


(* The surge suppressor is included with electromagnetic brake motors.)

Surge suppressor


Connection Method ASC46

The electromagnetic brake wire is linked to the connector on the motor [23.6 inch (600 mm)]. When connecting with the DC power supply, connect the red spiral lead wire to +24 V, and the black lead wire to the ground (GND). Use the extension cable or the movable cable (both sold separately) for standard.


Timing Chart for Electromagnetic Brake Operation

To release the electromagnetic brake, wait at least 0.5 seconds after turning on the driver power source.

ASC66

The electromagnetic brake wire is linked to the connector on the driver connection side of extension cable for electromagnetic brake models (sold separately). Be sure to use the accessory (sold separately) extension cable or movable cable. Connect the orange/black spiral lead wire [2.36 inch (60 mm)] to +24 V, and the gray lead wire [2.36 inch (60 mm)] to the ground (GND).

Introduction

AS

AS PLUS

ASC

R

CFKI

CSK

PMC

UMK

CSK

PK/PV

Ŗ

UI2120G

EMP401 EMP402

SC8800E

SG8030J

SMK

Accessorie

AC Input

AC Input

DC Input

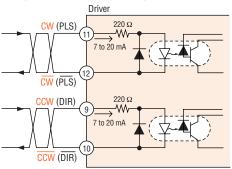
5-Phase Full/Half DC Input

2-Phase Full/Half AC Input DC Input

without Encoder

Encoder

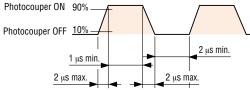
2-Phase Stepping Motors without with


Driver with Indexer

Controllers

5-Phase Microstep

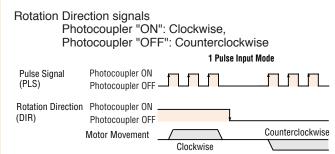
Description of Input/Output Signals Pulse Input (CW) and Rotation Direction (CCW) Input Signal



The letters indicate signals under the 2-pulse input mode, while the letters in parentheses indicate signals under the 1-pulse input mode.

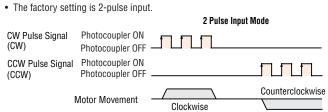
Note:

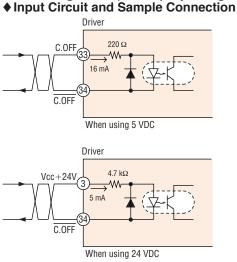
When Vo is equal to 5 VDC, the external resistance is not necessary.
 When Vo is above 5 VDC, connect the external resistance and keep the input current between 7 mA and 20 mA.


Pulse Waveform Characteristics (Photocoupler state corresponding to the input pulse)

For pulse signals, use input pulse waveforms like those shown the figure above.

♦ Pulse Input Mode 1-Pulse Input Mode

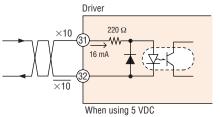

The 1-pulse input mode uses Pulse (PLS) and Rotation Direction (DIR) signals. CW is selected by inputting DIR signal at a low level (with the input photocoupler ON), CCW by inputting at high level (with input photocoupler OFF).

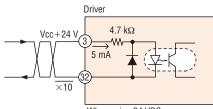

2-pulse input mode

The 2-pulse input mode is used for "CW" and "CCW" pulses. When "CW" pulses are input, the motor's output shaft rotates clockwise when the motor is viewed facing the shaft; when "CCW" pulses are input, the shaft rotates counterclockwise.

Note:

All Windings OFF (C.OFF) Input Signal


This controller power source offers a choice of either 5 VDC or 24 VDC.


Inputting the All Windings Off (C.OFF) signal puts the motor in a non-excitation (free) state. It is functioning when the photocoupler is ON. It is used when turning the motor shaft externally or when positioning manually. This signal clears the deviation counter.

Resolution Select (×10) Input Signal ♦ Input Circuit and Sample Connection

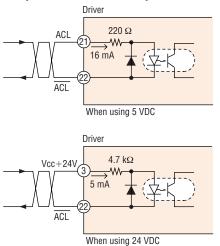
When using 24 VDC

This controller power source offers a choice of either 5 VDC or 24 VDC.

During input of this signal, the magnification of the resolution is $\times 10$. It is only valid when the resolution select switch is set to $\times 1.$

Note:

• When the resolution select switch is set to ×10, the Resolution Select Input is ignored. In this case, the Resolution Select Input is always equal to ON.

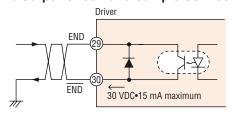

Introduction

AS AC Input **AS PLUS** AC Input 5-Phase Microstep R DC Input CFKI 5-Phase Full/Half 2-Phase Full/Half DC Input AC Input DC Input SIS PMC UMK CSK without Encoder 2-Phase Stepping Motors PK/PV Encoder PR with **UI2120G** Driver with Indexer EMP401 EMP402 SC8800E Controllers SG8030J

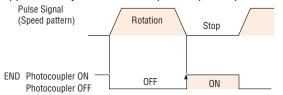
SMK

Accessories

Alarm Clear (ACL) Input Signal Input Circuit and Sample Connection

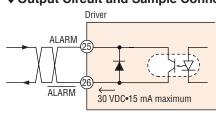


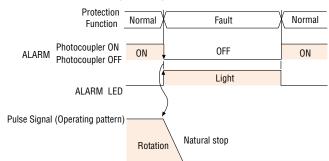
This controller power source offers a choice of either 5 VDC or 24 VDC. This signal is used for canceling the alarm without turning off power to the driver when a protection circuit has been activated.


Note:

. The following alarm cannot be cleared. To cancel the alarm, first resolve the cause and check for safety, and then turn power on again. Over Current
 •EEPROM Data Error
 •System Error

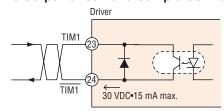
Position Completion (END) Output Signal Output Circuit and Sample Connection

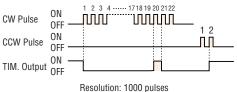

Circuits for use with 30 VDC, 15 mA maximum. This signal is output at the photocoupler ON state when positioning is completed. This signal is output when the rotor position is less than $\pm 1.8^{\circ}$ from the command position, approximately 2 ms after the pulse input stops.


Note:

. The END signal flashes during operation with a pulse input frequency of 500 Hz or less.

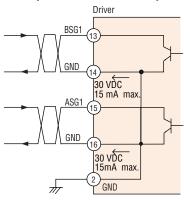
Alarm (ALARM) Output Signal ♦ Output Circuit and Sample Connection


Circuits for use with 30 VDC, 15 mA maximum. This signal indicates that one of the driver's protection circuits has been activated. When an abnormality such as an overload or over current is detected, the alarm signal is output, the ALARM indicator lights, and the motor stops (non-excitation state). To cancel the alarm, first resolve the cause and check for safety, and then input an Alarm Clear (ACL) signal or cycle power on. Once power has been turned off, wait at least 3 seconds before turning it on again.


Note:

· The alarm output uses positive logic (Normally Closed), all other outputs use negative logic (Normally Open).

Excitation Timing Signal (TIM.) Output Signal Output Circuit and Sample Connection


Circuits for use with 30 VDC, 15 mA maximum. When the Excitation Timing signal is output, the photocoupler turns ON. This signal can be used to detect the home position with greater precision. This signal is output 50 times per motor shaft revolution.

Note:

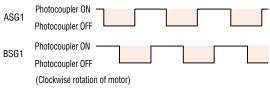
· A precise timing signal cannot be obtained when the speed of the pulse input frequency is over 500 Hz.

Quadrature (ASG1/BSG1) Output Signal ♦ Output Circuit and Sample Connection

Circuits for use with 30 VDC, 15 mA maximum. These signals are used when monitoring the motor position. The pulse resolution is the same as the motor resolution at the time of power-on.

[Example: Resolution select switch (1000 P/R) \rightarrow Output pulse number for each motor revolution (1000).] The phase difference between A and B is 90° electrical.

List of Motor and Driver Combinations


Туре	Package Model	Motor Model	Driver Model	
Standard	ASC34AK	ASM34AK	ASD10A-K	
	ASC36AK	ASM36AK	ASD10B-K	
	ASC46 K	ASM46⊡K	ASD18A-K	
	ASC66 K	ASM66⊡K	ASD36A-K	
	ASC46_K-T3.6	ASM46_K-T3.6		
	ASC46_K-T7.2	ASM46_K-T7.2		
	ASC46 K-T10	ASM46 K-T10	ASD18B-K	
	ASC46 K-T20	ASM46 K-T20	1	
TH Geared	ASC46_K-T30	ASC46_K-T30 ASM46_K-T30		
	ASC66_K-T3.6	ASM66_K-T3.6		
	ASC66 K-T7.2	ASM66_K-T7.2		
	ASC66 K-T10	ASM66 K-T10	ASD36B-K	
	ASC66_K-T20 ASM66_K-T20 ASC66_K-T30 ASM66_K-T30		-	
	ASC46_K-N7.2	ASM46_K-N7.2	ASD18A-K	
	ASC46 K-N10	ASM46_K-N10	ASDTOAR	
	ASC66 K-N5	ASM66_K-N5		
PN Geared	ASC66 K-N7.2	ASM66_K-N7.2	ASD36A-K	
FIN Gealeu	ASC66 K-N10	ASM66_K-N10	-	
	ASC66 K-N25	ASM66 K-N25		
	ASC66 K-N36	ASM66□K-N36	ASD36B-K	
	ASC66_K-N50	ASM66_K-N50	1	
	ASC34AK-H50	ASM34AK-H50	ASD10C-K	
	ASC34AK-H100	ASM34AK-H100		
HG Geared	ASC46 K-H50	ASM46 K-H50	- ASD18A-K	
ng Geareu	ASC46_K-H100	ASM46_K-H100	AJUTOA-N	
	ASC66 K-H50	ASM66_K-H50	ASD36B-K	
	ASC66 K-H100	ASM66_K-H100		

• Enter A (standard) or M (electromagnetic) in the box (
) within the model numbers.

Notes:

- The pulse output accuracy is, regardless of resolution, within $\pm 0.36^\circ$ (repetition accuracy: within 0.09°)
- These signals are only for position verification when the motor has stopped. There is a 1 ms (max.) time lag between real rotor motion and the output signals.

Pulse Waveform Characteristics

